Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38509230

RESUMEN

BACKGROUND: Understanding the relationship between psychopathology and major domains of human neurobehavioral functioning may identify new transdiagnostic treatment targets. However, studies examining the interrelationship between psychopathological symptoms, sensorimotor, cognitive, and global functioning in a transdiagnostic sample are lacking. We hypothesized a close relationship between sensorimotor and cognitive functioning in a transdiagnostic patient sample. METHODS: We applied network analysis and community detection methods to examine the interplay and centrality [expected influence (EI) and strength] between psychopathological symptoms, sensorimotor, cognitive, and global functioning in a transdiagnostic sample consisting of 174 schizophrenia spectrum (SSD) and 38 mood disorder (MOD) patients. All patients (n = 212) were examined with the Positive and Negative Syndrome Scale (PANSS), the Heidelberg Neurological Soft Signs Scale (NSS), the Global Assessment of Functioning (GAF), and the Brief Cognitive Assessment Tool for Schizophrenia consisted of trail making test B (TMT-B), category fluency (CF) and digit symbol substitution test (DSST). RESULTS: NSS showed closer connections with TMT-B, CF, and DSST than with GAF and PANSS. DSST, PANSS general, and NSS motor coordination scores showed the highest EI. Sensory integration, DSST, and CF showed the highest strength. CONCLUSIONS: The close connection between sensorimotor and cognitive impairment as well as the high centrality of sensorimotor symptoms suggests that both domains share aspects of SSD and MOD pathophysiology. But, because the majority of the study population was diagnosed with SSD, the question as to whether sensorimotor symptoms are really a transdiagnostic therapeutic target needs to be examined in future studies including more balanced diagnostic groups.

2.
Addict Biol ; 29(5): e13395, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38709211

RESUMEN

The brain mechanisms underlying the risk of cannabis use disorder (CUD) are poorly understood. Several studies have reported changes in functional connectivity (FC) in CUD, although none have focused on the study of time-varying patterns of FC. To fill this important gap of knowledge, 39 individuals at risk for CUD and 55 controls, stratified by their score on a self-screening questionnaire for cannabis-related problems (CUDIT-R), underwent resting-state functional magnetic resonance imaging. Dynamic functional connectivity (dFNC) was estimated using independent component analysis, sliding-time window correlations, cluster states and meta-state indices of global dynamics and were compared among groups. At-risk individuals stayed longer in a cluster state with higher within and reduced between network dFNC for the subcortical, sensory-motor, visual, cognitive-control and default-mode networks, relative to controls. More globally, at-risk individuals had a greater number of meta-states and transitions between them and a longer state span and total distance between meta-states in the state space. Our findings suggest that the risk of CUD is associated with an increased dynamic fluidity and dynamic range of FC. This may result in altered stability and engagement of the brain networks, which can ultimately translate into altered cortical and subcortical function conveying CUD risk. Identifying these changes in brain function can pave the way for early pharmacological and neurostimulation treatment of CUD, as much as they could facilitate the stratification of high-risk individuals.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Abuso de Marihuana , Humanos , Masculino , Femenino , Abuso de Marihuana/fisiopatología , Abuso de Marihuana/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto Joven , Adulto , Estudios de Casos y Controles , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Adolescente
3.
Nervenarzt ; 95(1): 10-17, 2024 Jan.
Artículo en Alemán | MEDLINE | ID: mdl-38092982

RESUMEN

Patients with catatonia often show serious motor, affective and behavioral symptoms, behind which the subjective experience often remains hidden. Therefore, this study disseminates our own systematic empirical investigation of the subjective experience of catatonia patients to a German-speaking audience of clinicians and researchers. Based on current evidence and the clinical experience of the authors, the self-report questionnaire Northoff Scale for Subjective Experience in Catatonia (NSSC) was modified, extended and validated and now consists of 26 items capturing the subjective experience of catatonia in its clinical diversity. A total of 46 patients with catatonia according to the International Classification of Diseases (11th revision, ICD-11) were asked about their subjective experience during the acute phase of the disease using the NSSC. The NSSC showed high internal consistency (Cronbach's alpha = 0.91). The NSSC total score was significantly associated with the Northoff Catatonia Rating Scale (NCRS; r = 0.46; p < 0.05), the total score of the Positive and Negative Syndrome Scale (PANSS; r = 0.30; p < 0.05), the Brief Psychiatric Rating Scale (BPRS; r = 0.33; p < 0.05), and Trait Anxiety (STAI; r = 0.64; p < 0.01), supporting its validity. Preliminary validation of the NSSC revealed good psychometric properties. The NSSC is a useful instrument for routine clinical use to assess the subjective experience of patients with catatonia in order to provide tailored psychotherapeutic interventions.


Asunto(s)
Catatonia , Humanos , Catatonia/psicología , Trastornos de Ansiedad , Ansiedad , Encuestas y Cuestionarios , Psicometría , Reproducibilidad de los Resultados
4.
Neuropsychobiology ; 82(2): 72-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36634631

RESUMEN

INTRODUCTION: Auditory verbal hallucinations (AVH) are transdiagnostic phenomena that can occur in several mental disorders, including borderline personality disorder (BPD). Despite the transdiagnostic relevance of these symptoms, very little is known about neural signatures of AVH in BPD. METHODS: We used structural magnetic resonance imaging to investigate multiple markers of brain morphology in BPD patients presenting with a lifetime history of AVH (AVH, n = 6) versus BPD patients without AVH (nAVH, n = 10) and healthy controls (HC, n = 12). The Computational Anatomy Toolbox (CAT12) was used for surface-based morphometric analyses that considered cortical thickness (CTh), gyrification (CG), and complexity of cortical folding (CCF). Factorial models were used to explore differences between AVH patients and HC, as well as between the patient groups. RESULTS: Compared to HC, AVH patients showed distinct abnormalities in key regions of the language network, i.e., aberrant CTh and CG in right superior temporal gyrus and abnormal CCF in left inferior frontal gyrus. Further abnormalities were found in right prefrontal cortex (CTh) and left orbitofrontal cortex (CCF). Compared to nAVH patients, individuals with AVH showed abnormal CTh in right prefrontal cortex, along with CCF differences in right transverse temporal, superior parietal, and parahippocampal gyri. CG differences between the patient groups were found in left orbitofrontal cortex. CONCLUSION: The data suggest a transdiagnostic neural signature of voice-hearing that converges on key regions involved in speech generation and perception, memory and executive control. It is possible that cortical features of distinct evolutionary and genetic origin, i.e., CTh and CG/CCF, differently contribute to AVH vulnerability in BPD.


Asunto(s)
Trastorno de Personalidad Limítrofe , Humanos , Trastorno de Personalidad Limítrofe/complicaciones , Trastorno de Personalidad Limítrofe/diagnóstico por imagen , Proyectos Piloto , Alucinaciones/diagnóstico por imagen , Lóbulo Temporal/patología , Imagen por Resonancia Magnética , Audición
5.
Eur Arch Psychiatry Clin Neurosci ; 273(8): 1703-1713, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36806586

RESUMEN

Illness insight in schizophrenia (SZ) has an important impact on treatment outcome, integration into society and can vary over the course of the disorder. To deal with and treat reduced or absent illness insight, we need to better understand its functional and structural correlates. Previous studies showed regionally abnormal brain volume in brain areas related to cognitive control and self-reference. However, little is known about associations between illness insight and structural and functional network strength in patients with SZ. This study employed a cross-sectional design to examine structural and functional differences between patients with SZ (n = 74) and healthy controls (n = 47) using structural and resting-state functional magnetic resonance imaging (MRI). Voxel-based morphometry was performed on structural data, and the amplitude of low frequency fluctuations (ALFF) was calculated for functional data. To investigate abnormal structure/function interrelationships and their association with illness insight, we used parallel independent component analysis (pICA). Significant group (SZ vs. HC) differences were detected in distinct structural and functional networks, predominantly comprising frontoparietal, temporal and cerebellar regions. Significant associations were found between illness insight and two distinct structural networks comprising frontoparietal (pre- and postcentral gyrus, inferior parietal lobule, thalamus, and precuneus) and posterior cortical regions (cuneus, precuneus, lingual, posterior cingulate, and middle occipital gyrus). Finally, we found a significant relationship between illness insight and functional network comprising temporal regions (superior temporal gyrus). This study suggests that aberrant structural and functional integrity of neural systems subserving cognitive control, memory and self-reference are tightly coupled to illness insight in SZ.


Asunto(s)
Esquizofrenia , Humanos , Estudios Transversales , Encéfalo , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
6.
Eur Addict Res ; 29(1): 71-75, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36470225

RESUMEN

BACKGROUND: Excessive smartphone use (ESU), that is, a pattern of smartphone use that shows specific features of addictive behavior, has increasingly attracted societal and scientific interest in the past years. On the neurobiological level, ESU has recently been related to structural and functional variation in reward and salience processing networks, as shown by, for example, aberrant patterns of neural activity elicited by specific smartphone cues. OBJECTIVES: Expanding on these findings, using cross-modal correlations of magnetic resonance imaging (MRI)-based measures with nuclear imaging-derived estimates, we aimed at identifying neurochemical pathways that are related to ESU. METHODS: Cross-modal correlations between functional MRI data derived from a cue-reactivity task administered in persons with and without ESU and specific PET/SPECT receptor probability maps. RESULTS: The endogenous mu-opioid receptor (MOR) system was found to be significantly (FDR-corrected) correlated with fMRI data, and z-transformed correlation coefficients showed an association (albeit nonsignificant after FDR-correction) between MOR and the Smartphone Addiction Inventory "withdrawal" dimension. CONCLUSIONS: We could identify the MOR system as a neurochemical pathway associated with ESU. The MOR system is closely linked to the reward system, which has been recognized as a key player in addictive disorders. Together with its potential link to withdrawal, the MOR system hints toward a biologically highly relevant marker, which should be taken into consideration in the ongoing scientific discussion on technology-related addictive behaviors.


Asunto(s)
Conducta Adictiva , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Señales (Psicología) , Teléfono Inteligente , Imagen por Resonancia Magnética/métodos
7.
Nervenarzt ; 94(9): 835-841, 2023 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-37428239

RESUMEN

Historical authors (e.g., Ludwig Binswanger and Eugène Minkowski) postulated that the experience of patients with schizophrenia is characterized by time fragmentation. From a clinical perspective, patients with schizophrenia also suffer from difficulties in spatial perception (e.g., abnormalities in the experience of interpersonal distance and spatial orientation). Although these changes can lead to a serious detachment from reality, to considerable suffering of the affected persons and to difficulties in the therapeutic process, the abnormal experience of space and time in psychotic disorders has not yet been sufficiently investigated. One possible reason is the lack of appropriate and standardized instruments that quantify the experience of space and time in patients with psychotic disorders. Based on an innovative concept, the so-called spatiotemporal psychopathology (STPP), a clinical rating scale for the systematic-quantitative assessment of spatial and temporal experience in patients with psychotic disorders was developed. This article presents the German version of the Scale for Space and Time Experience in Psychosis (STEP). The original English version of the STEP measures different spatial (14 phenomena) and temporal (11 phenomena) phenomena in 25 items. The STEP shows both a high internal consistency (Cronbach's alpha = 0.94) and a significant correlation with the Positive and Negative Syndrome Scale (PANSS; p < 0.001). In summary, the German version of the STEP scale presented here represents an important instrument in the German-speaking countries for the assessment of spatial and temporal experience in patients with psychotic disorders.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Reproducibilidad de los Resultados , Esquizofrenia/diagnóstico , Esquizofrenia/terapia , Psicopatología , Psicometría , Trastornos Psicóticos/diagnóstico
8.
Neuropsychobiology ; 81(6): 531-538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36380634

RESUMEN

INTRODUCTION: Recently, several mindfulness-based programs showed promising clinical effects in the treatment of psychiatric disorders including substance use disorders. However, very little is known about the effects of mindfulness-based interventions (MBIs) on brain structure in such patients. METHODS: This study aimed to detect changes in gray matter volume (GMV) in opioid-dependent patients receiving MBI during their first month of treatment. Thirty patients were assigned to either 3 weeks of MBI (n = 16) or treatment as usual (TAU, n = 14) and were investigated using structural magnetic resonance imaging before and after treatment. Longitudinal pipeline of the Computational Anatomy Toolbox for SPM (CAT12) was used to detect significant treatment-related changes over time. The identified GMV changes following treatment were related to clinically relevant measures such as impulsivity, distress tolerance, and mindfulness. RESULTS: After treatment, increased mindfulness scores were found in individuals receiving MBI compared to TAU. In the MBI group, there were also significant differences with respect to distress tolerance and impulsivity. Effects on mindfulness, distress tolerance, and impulsivity were also found in the TAU group. Longitudinal within-group analysis revealed increased left anterior insula GMV in individuals receiving MBI. Anterior insula volume increase was associated with decreased impulsivity levels. In the TAU group, significant GMV changes were found in the right lingual gyrus and right entorhinal cortex. DISCUSSION/CONCLUSION: MBI can yield significant clinical effects during early abstinence from opioid dependence. MBI is particularly associated with increased insula GMV, supporting an important role of this region in the context of MBI-induced neural changes.


Asunto(s)
Sustancia Gris , Atención Plena , Trastornos Relacionados con Opioides , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Imagen por Resonancia Magnética , Trastornos Relacionados con Opioides/diagnóstico por imagen , Trastornos Relacionados con Opioides/terapia , Resultado del Tratamiento
9.
Eur Arch Psychiatry Clin Neurosci ; 272(6): 1097-1108, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34839404

RESUMEN

The rapidly evolving field of sensorimotor neuroscience reflects the scientific and clinical relevance of sensorimotor abnormalities as an intrinsic component of the disease process, e.g., in patients with schizophrenia spectrum disorders (SSD). Despite previous efforts, however, prevalence rates and relationships between different categories of sensorimotor abnormalities in SSD patients are still subject of ongoing debate. In this study, we examined five different categories of the sensorimotor domain (Neurological soft signs (NSS), parkinsonism, catatonia, akathisia, and tardive dyskinesia) according to well-established clinical ratings scales and the respective cut-off criteria in a sample of 131 SSD patients. We used a collection of statistical methods to better understand prevalence, overlap and heterogeneity, as well as psychopathological and cognitive correlates of sensorimotor abnormalities. 97.7% of the SSD patients considered by this study exhibited at least one categorically defined sensorimotor abnormality that tended to co-vary within three different sensorimotor subgroups (moderate, hyperkinetic and hypokinetic). Finally, hyperkinetic and hypokinetic groups differed significantly in their neurocognitive performance compared with the moderate group. The results suggest different patterns of clinical overlap, highlight the relationship between sensorimotor and cognitive domain and provide clues for further neurobiological studies.


Asunto(s)
Trastornos Parkinsonianos , Esquizofrenia , Humanos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico
10.
Eur Arch Psychiatry Clin Neurosci ; 272(6): 985-995, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34518921

RESUMEN

Insight into illness in schizophrenia (SZ) patients has a major impact on treatment adherence and outcome. Previous studies have linked distinct deviations of brain structure to illness insight, specifically in frontoparietal and subcortical regions. Some of these abnormalities are thought to reflect aberrant cortical development. In this study, we used cross-sectional data to examine associations between illness insight and two cortical surface markers that are known to follow distinct neurodevelopmental trajectories, i.e. cortical gyrification (CG) and thickness (CT). CG and CT was investigated in SZ patients (n = 82) and healthy controls (HC, n = 48) using 3 T structural magnetic resonance imaging. Illness insight in SZ patients was measured using the OSSTI scale, an instrument that provides information on two distinct dimensions of illness insight, i.e. treatment adherence (OSSTI-A) and identification of disease-related symptoms (OSSTI-I). CT and CG were computed using the Computational Anatomy Toolbox (CAT12). Whole-brain and regions-of-interest (ROI)-based analyses were performed. SZ patients showed higher CG in anterior cingulate, superior frontal and temporal gyrus and reduced CG in insular and superior frontal cortex when compared to HC. SZ patients showed decreased CT in pre- and paracentral, occipital, cingulate, frontoparietal and temporal regions. Illness insight in SZ patients was significantly associated with both CG and CT in the left inferior parietal lobule (OSSTI-A) and the right precentral gyrus (CG/OSSTI-A, CT/OSSTI-I). The data support a multi-parametric neuronal model with both pre- and postnatal brain developmental factors having an impact on illness insight in patients with SZ.


Asunto(s)
Esquizofrenia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Lóbulo Temporal/patología
11.
Addict Biol ; 27(2): e13113, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34808703

RESUMEN

Heavy cannabis use (HCU) is frequently associated with a plethora of cognitive, psychopathological and sensorimotor phenomena. Although HCU is frequent, specific patterns of abnormal brain structure and function underlying HCU in individuals presenting without cannabis-use disorder or other current and life-time major mental disorders are unclear at present. This multimodal magnetic resonance imaging (MRI) study examined resting-state functional MRI (rs-fMRI) and structural MRI (sMRI) data from 24 persons with HCU and 16 controls. Parallel independent component analysis (p-ICA) was used to examine covarying components among grey matter volume (GMV) maps computed from sMRI and intrinsic neural activity (INA), as derived from amplitude of low-frequency fluctuations (ALFF) maps computed from rs-fMRI data. Further, we used JuSpace toolbox for cross-modal correlations between MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying HCU. We identified two transmodal components, which significantly differed between the HCU and controls (GMV: p = 0.01, ALFF p = 0.03, respectively). The GMV component comprised predominantly cerebello-temporo-thalamic regions, whereas the INA component included fronto-parietal regions. Across HCU, loading parameters of both components were significantly associated with distinct HCU behavior. Finally, significant associations between GMV and the serotonergic system as well as between INA and the serotonergic, dopaminergic and µ-opioid receptor system were detected. This study provides novel multimodal neuromechanistic insights into HCU suggesting co-altered structure/function-interactions in neural systems subserving cognitive and sensorimotor functions.


Asunto(s)
Cannabis , Encéfalo , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética , Tálamo
12.
Hum Brain Mapp ; 42(18): 6087-6098, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34585808

RESUMEN

Catatonia is a transnosologic psychomotor syndrome with high prevalence in schizophrenia spectrum disorders (SSD). There is mounting neuroimaging evidence that catatonia is associated with aberrant frontoparietal, thalamic and cerebellar regions. Large-scale brain network dynamics in catatonia have not been investigated so far. In this study, resting-state fMRI data from 58 right-handed SSD patients were considered. Catatonic symptoms were examined on the Northoff Catatonia Rating Scale (NCRS). Group spatial independent component analysis was carried out with a multiple analysis of covariance (MANCOVA) approach to estimate and test the underlying intrinsic components (ICs) in SSD patients with (NCRS total score ≥ 3; n = 30) and without (NCRS total score = 0; n = 28) catatonia. Functional network connectivity (FNC) during rest was calculated between pairs of ICs and transient changes in connectivity were estimated using sliding windowing and clustering (to capture both static and dynamic FNC). Catatonic patients showed increased static FNC in cerebellar networks along with decreased low frequency oscillations in basal ganglia (BG) networks. Catatonic patients had reduced state changes and dwelled more in a state characterized by high within-network correlation of the sensorimotor, visual, and default-mode network with respect to noncatatonic patients. Finally, in catatonic patients according to DSM-IV-TR (n = 44), there was a significant correlation between increased within FNC in cortico-striatal state and NCRS motor scores. The data support a neuromechanistic model of catatonia that emphasizes a key role of disrupted sensorimotor network control during distinct functional states.


Asunto(s)
Encéfalo/fisiopatología , Catatonia/fisiopatología , Conectoma , Red Nerviosa/fisiopatología , Adulto , Encéfalo/diagnóstico por imagen , Catatonia/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen
13.
Eur Arch Psychiatry Clin Neurosci ; 271(8): 1455-1464, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33950322

RESUMEN

The relative roles of brainstem, thalamus and striatum in parkinsonism in schizophrenia spectrum disorder (SSD) patients are largely unknown. To determine whether topographical alterations of the brainstem, thalamus and striatum contribute to parkinsonism in SSD patients, we conducted structural magnetic resonance imaging (MRI) of SSD patients with (SSD-P, n = 35) and without (SSD-nonP, n = 64) parkinsonism, as defined by a Simpson and Angus Scale (SAS) total score of ≥ 4 and < 4, respectively, in comparison with healthy controls (n = 20). FreeSurfer v6.0 was used for segmentation of four brainstem regions (medulla oblongata, pons, superior cerebellar peduncle and midbrain), caudate nucleus, putamen and thalamus. Patients with parkinsonism had significantly smaller medulla oblongata (p = 0.01, false discovery rate (FDR)-corrected) and putamen (p = 0.02, FDR-corrected) volumes when compared to patients without parkinsonism. Across the entire patient sample (n = 99), significant negative correlations were identified between (a) medulla oblongata volumes and both SAS total (p = 0.034) and glabella-salivation (p = 0.007) scores, and (b) thalamic volumes and both SAS total (p = 0.033) and glabella-salivation (p = 0.007) scores. These results indicate that brainstem and thalamic structures as well as basal ganglia-based motor circuits play a crucial role in the pathogenesis of parkinsonism in SSD.


Asunto(s)
Ganglios Basales , Tronco Encefálico , Esquizofrenia , Tálamo , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Estudios de Casos y Controles , Humanos , Imagen por Resonancia Magnética , Trastornos Parkinsonianos/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Tálamo/diagnóstico por imagen , Tálamo/patología
14.
Addict Biol ; 26(5): e13032, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33951262

RESUMEN

Sensorimotor dysfunction has been previously reported in persons with cannabis dependence. Such individuals can exhibit increased levels of neurological soft signs (NSS), particularly involving motor coordination and sensorimotor integration. Whether such abnormalities may also apply to non-dependent individuals with heavy cannabis use (HCU) is unknown, as much as the neural correlates underlying such deficits. In this study, we investigated associations between NSS and gray matter volume (GMV) in males with HCU and male controls. Twenty-four persons with HCU and 17 controls were examined using standardized assessment of NSS and structural magnetic resonance imaging (MRI) at 3 T. GMV was calculated using voxel-based morphometry algorithms provided by the Computational Anatomy Toolbox (CAT12). Individuals with HCU showed higher NSS total scores compared to controls. In particular, significant NSS-subdomain effects were found for "motor coordination" (MoCo), "complex motor tasks" (CoMT), and "hard signs" (HS) expression in HCU (p < 0.05, Bonferroni-corrected). Compared to controls, persons with HCU showed significant NSS/GMV interactions in putamen and inferior frontal cortex (MoCo), right cerebellum (CoMT) and middle and superior frontal cortices, and bilateral precentral cortex and thalamus (HS). In between-group analyses, individuals with HCU showed lower GMV in the right anterior orbital and precentral gyrus, as well as higher GMV in the right superior frontal gyrus and left supplementary motor cortex compared to controls. The data support the notion of abnormal sensorimotor performance associated with HCU. The data also provide a neuromechanistic understanding of such deficits, particularly with respect to aberrant cortical-thalamic-cerebellar-cortical circuit.


Asunto(s)
Abuso de Marihuana/fisiopatología , Desempeño Psicomotor/efectos de los fármacos , Adolescente , Adulto , Encéfalo/fisiopatología , Cannabis , Cerebelo/patología , Sustancia Gris/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Corteza Motora , Corteza Prefrontal/patología , Adulto Joven
15.
Eur Addict Res ; 27(2): 115-122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33080597

RESUMEN

INTRODUCTION: Acute and long-term adverse effects of heavy cannabis use (HCU) on neurocognitive function have been suggested, as much as regional changes of brain volume. However, little is known about the relationship between impaired cognition and brain structure in individuals with HCU. OBJECTIVE: Here, we investigated associations between cognition and cortical thickness (CT) in males with HCU and male controls. METHODS: Twenty-six individuals with HCU and 20 controls were examined using a comprehensive neuropsychological test battery and high-resolution structural MRI at 3T. CT was calculated using the Computational Anatomy Toolbox (CAT12). RESULTS: Individuals with HCU differed from controls with respect to verbal learning performance and verbal working memory only. Individuals with HCU showed reduced CT in medial temporal, orbitofrontal, and cingulate regions, as well as in areas of the middle temporal and fusiform cortex (peak voxel family-wise error-corrected p < 0.001, followed by empirically determined correction for spatial extent) compared to HC. Verbal learning performance was associated with right entorhinal and left orbitofrontal CT reductions. Entorhinal CT was also significantly associated with amount and frequency of current weekly cannabis use. CONCLUSIONS: The data support the notion of domain-specific cognitive impairment in individuals with HCU and provide a neuromechanistic understanding of such deficits, particularly with respect to abnormal CT in brain areas associated with long-term memory processing.


Asunto(s)
Cannabis , Cognición , Encéfalo , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas
16.
Nervenarzt ; 92(9): 915-924, 2021 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-34115150

RESUMEN

Over the past three decades research interest in hypokinetic, hyperkinetic, sensorimotor and psychomotor abnormalities in mental disorders has steadily increased. This development has led to an increasing number of scientific initiatives that have not only highlighted the clinical need for early detection of extrapyramidal motor symptoms, tardive dyskinesia and catatonia but also provided numerous neurobiological findings and clinically relevant results based on the pathology of the sensorimotor system in patients with mental disorders. In view of these developments in January 2019 the National Institute of Mental Health (NIMH) research domain criteria (RDoC) initiative introduced a sixth domain called the sensorimotor domain to address deficits in the sensorimotor system and associated behavioral abnormalities. To draw attention to the rapid progress just since the introduction of the sensorimotor domain, a 2-year (1 January 2019-18 February 2021) systematic review is presented highlighting recent neuroimaging findings and discussing challenges for future research. In summary, aberrant sensorimotor processing in mental disorders is associated with dysfunction of the cerebello-thalamo-motor cortex network, which interacts with (social)cognitive and affective systems. Initial longitudinal and interventional studies highlight the translational potential of the sensorimotor domain.


Asunto(s)
Trastornos Mentales , Humanos , Trastornos Mentales/diagnóstico , National Institute of Mental Health (U.S.) , Estados Unidos
17.
Nervenarzt ; 92(9): 892-906, 2021 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-34342677

RESUMEN

Cognitive control (CC) represents one of six constructs within the research domain criteria (RDoC) domain of cognitive systems, which can be examined using different units of analyses (from genetic and molecular mechanisms to neural circuits and self-reports). The CC is defined as the ability to execute top-down control over task-specific processes and to coordinate thought and actions to achieve a specific goal. Within the field of cognitive neuroscience, recent studies provided important findings about central neuronal components of the CC network and the interactions with other relevant functional systems. In the development and maintenance of distinct psychiatrically relevant symptoms, such as auditory verbal hallucinations (AVH) or hearing voices, dysfunctional CC is thought to play an essential transdiagnostic role. This selective literature review addresses the specific and clinically relevant question of the extent to which the RDoC construct of CC has been incorporated into studies investigating the neurobiological mechanisms of AVH. In addition, an overview of the extent to which findings exploring the underlying mechanisms have been transferred into daily clinical routine is provided. Furthermore, future research perspectives and therapeutic approaches are discussed. Based on currently preferred neurobiological models of AVH, nonpharmacological strategies, such as brain stimulation techniques and psychotherapy can be derived. Further research perspectives arise in the field of interventional studies oriented towards the RDoC matrix.


Asunto(s)
Neurociencia Cognitiva , Alucinaciones , Cognición , Alucinaciones/diagnóstico , Alucinaciones/terapia , Humanos
18.
Psychol Med ; 50(14): 2335-2345, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31524112

RESUMEN

BACKGROUND: Cognitive impairment is a core feature of major depressive disorder (MDD). Cognitive remediation may improve cognition in MDD, yet so far, the underlying neural mechanisms are unclear. This study investigated changes in intrinsic neural activity in MDD after a cognitive remediation trial. METHODS: In a longitudinal design, 20 patients with MDD and pronounced cognitive deficits and 18 healthy controls (HC) were examined using resting-state functional magnetic resonance imaging. MDD patients received structured cognitive remediation therapy (CRT) over 5 weeks. The whole-brain fractional amplitude of low-frequency fluctuations was computed before the first and after the last training session. Univariate methods were used to address regionally-specific effects, and a multivariate data analysis strategy was employed to investigate functional network strength (FNS). RESULTS: MDD patients significantly improved in cognitive function after CRT. Baseline comparisons revealed increased right caudate activity and reduced activity in the left frontal cortex, parietal lobule, insula, and precuneus in MDD compared to HC. In patients, reduced FNS was found in a bilateral prefrontal system at baseline (p < 0.05, uncorrected). In MDD, intrinsic neural activity increased in right inferior frontal gyrus after CRT (p < 0.05, small volume corrected). Left inferior parietal lobule, left insula, left precuneus, and right caudate activity showed associations with cognitive improvement (p < 0.05, uncorrected). Prefrontal network strength increased in patients after CRT, but this increase was not associated with improved cognitive performance. CONCLUSIONS: Our findings support the role of intrinsic neural activity of the prefrontal cortex as a possible mediator of cognitive improvement following CRT in MDD.


Asunto(s)
Cognición/fisiología , Remediación Cognitiva , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/terapia , Corteza Prefrontal/fisiopatología , Adulto , Mapeo Encefálico/métodos , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Descanso
19.
Cerebellum ; 19(6): 762-770, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32642931

RESUMEN

Cerebellar involvement in major depressive disorder (MDD) has been demonstrated by a growing number of studies, but it is unknown whether cognitive functioning in depressed individuals is related to cerebellar gray matter volume (GMV) abnormalities. Impaired attention and executive dysfunction are characteristic cognitive deficits in MDD, and critically, they often persist despite remission of mood symptoms. In this study, we investigated cerebellar GMV in patients with remitted MDD (rMDD) that showed persistent cognitive impairment. We applied cerebellum-optimized voxel-based morphometry in 37 patients with rMDD and with cognitive deficits, in 12 patients with rMDD and without cognitive deficits, and in 36 healthy controls (HC). Compared with HC, rMDD patients with cognitive deficits had lower GMV in left area VIIA, crus II, and in vermal area VIIB. In patients with rMDD, regression analyses demonstrated significant associations between GMV reductions in both regions and impaired attention and executive dysfunction. Compared with HC, patients without cognitive deficits showed increased GMV in bilateral area VIIIB. This study supports cerebellar contributions to the cognitive dimension of MDD. The data also point towards cerebellar area VII as a potential target for non-invasive brain stimulation to treat cognitive deficits related to MDD.


Asunto(s)
Cerebelo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/epidemiología , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/epidemiología , Adulto , Terapia Cognitivo-Conductual/métodos , Disfunción Cognitiva/terapia , Trastorno Depresivo Mayor/terapia , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos
20.
Neuropsychobiology ; 79(4-5): 335-344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32160619

RESUMEN

INTRODUCTION: Delusions are core symptoms of schizophrenia-spectrum and related disorders. Despite their clinical relevance, the neural correlates underlying such phenomena are unclear. Recent research suggests that specific delusional content may be associated with distinct neural substrates. OBJECTIVE: Here, we used structural magnetic resonance imaging to investigate multiple parameters of brain morphology in patients presenting with paranoid type delusional disorder (pt-DD, n = 14) compared to those of healthy controls (HC, n = 25). METHODS: Voxel- and surface-based morphometry for structural data was used to investigate gray matter volume (GMV), cortical thickness (CT) and gyrification. RESULTS: Compared to HC, patients with pt-DD showed reduced GMV in bilateral amygdala and right inferior frontal gyrus. Higher GMV in patients was found in bilateral orbitofrontal and in left superior frontal cortices. Patients also had lower CT in frontal and temporal regions. Abnormal gyrification in patients was evident in frontal and temporal areas, as well as in bilateral insula. CONCLUSIONS: The data suggest the presence of aberrant GMV in a right prefrontal region associated with belief evaluation, as well as distinct structural abnormalities in areas that essentially subserve processing of fear, anxiety and threat in patients with pt-DD. It is possible that cortical features of distinct evolutionary and genetic origin, i.e. CT and gyrification, contribute differently to the pathogenesis of pt-DD.


Asunto(s)
Amígdala del Cerebelo/patología , Corteza Cerebral/patología , Sustancia Gris/patología , Esquizofrenia Paranoide/patología , Adulto , Anciano , Amígdala del Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/patología , Esquizofrenia Paranoide/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA