Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(5): 2030-2038, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37095352

RESUMEN

Studies applying Free Water Imaging have consistently reported significant global increases in extracellular free water (FW) in populations of individuals with early psychosis. However, these published studies focused on homogenous clinical participant groups (e.g., only first episode or chronic), thereby limiting our understanding of the time course of free water elevations across illness stages. Moreover, the relationship between FW and duration of illness has yet to be directly tested. Leveraging our multi-site diffusion magnetic resonance imaging(dMRI) harmonization approach, we analyzed dMRI scans collected by 12 international sites from 441 healthy controls and 434 individuals diagnosed with schizophrenia-spectrum disorders at different illness stages and ages (15-58 years). We characterized the pattern of age-related FW changes by assessing whole brain white matter in individuals with schizophrenia and healthy controls. In individuals with schizophrenia, average whole brain FW was higher than in controls across all ages, with the greatest FW values observed from 15 to 23 years (effect size range = [0.70-0.87]). Following this peak, FW exhibited a monotonic decrease until reaching a minima at the age of 39 years. After 39 years, an attenuated monotonic increase in FW was observed, but with markedly smaller effect sizes when compared to younger patients (effect size range = [0.32-0.43]). Importantly, FW was found to be negatively associated with duration of illness in schizophrenia (p = 0.006), independent of the effects of other clinical and demographic data. In summary, our study finds in a large, age-diverse sample that participants with schizophrenia with a shorter duration of illness showed higher FW values compared to participants with more prolonged illness. Our findings provide further evidence that elevations in the FW are present in individuals with schizophrenia, with the greatest differences in the FW being observed in those at the early stages of the disorder, which might suggest acute extracellular processes.

2.
Front Neuroendocrinol ; 67: 101031, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35998859

RESUMEN

Worldwide over 150 million women use oral contraceptives (OCs), which are the most prescribed form of contraception in both the United States and in European countries. Sex hormones, such as estradiol and progesterone, are important endogenous hormones known for shaping the brain across the life span. Synthetic hormones, which are present in OCs, interfere with the natural hormonal balance by reducing the endogenous hormone levels. Little is known how this affects the brain, especially during the most vulnerable times of brain maturation. Here, we review studies that investigate differences in brain gray and white matter in women using OCs in comparison to naturally cycling women. We focus on two neuroimaging methods used to quantify structural gray and white matter changes, namely structural MRI and diffusion MRI. Finally, we discuss the potential of these imaging techniques to advance knowledge about the effects of OCs on the brain and wellbeing in women.


Asunto(s)
Anticonceptivos Orales , Objetivos , Humanos , Femenino , Anticonceptivos Orales/farmacología , Progesterona/farmacología , Estradiol , Encéfalo/diagnóstico por imagen
3.
Hum Brain Mapp ; 44(6): 2465-2478, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744628

RESUMEN

The choroid plexus (ChP) is part of the blood-cerebrospinal fluid barrier, regulating brain homeostasis and the brain's response to peripheral events. Its upregulation and enlargement are considered essential in psychosis. However, the timing of the ChP enlargement has not been established. This study introduces a novel magnetic resonance imaging-based segmentation method to examine ChP volumes in two cohorts of individuals with psychosis. The first sample consists of 41 individuals with early course psychosis (mean duration of illness = 1.78 years) and 30 healthy individuals. The second sample consists of 30 individuals with chronic psychosis (mean duration of illness = 7.96 years) and 34 healthy individuals. We utilized manual segmentation to measure ChP volumes. We applied ANCOVAs to compare normalized ChP volumes between groups and partial correlations to investigate the relationship between ChP, LV volumes, and clinical characteristics. Our segmentation demonstrated good reliability (.87). We further showed a significant ChP volume increase in early psychosis (left: p < .00010, right: p < .00010) and a significant positive correlation between higher ChP and higher LV volumes in chronic psychosis (left: r = .54, p = .0030, right: r = .68; p < .0010). Our study suggests that ChP enlargement may be a marker of acute response around disease onset. It might also play a modulatory role in the chronic enlargement of lateral ventricles, often reported in psychosis. Future longitudinal studies should investigate the dynamics of ChP enlargement as a promising marker for novel therapeutic strategies.


Asunto(s)
Plexo Coroideo , Trastornos Psicóticos , Humanos , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/patología , Reproducibilidad de los Resultados , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Imagen por Resonancia Magnética , Encéfalo/patología
4.
Dev Neurosci ; 45(4): 161-180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36977393

RESUMEN

A complete structural definition of the human nervous system must include delineation of its wiring diagram (e.g., Swanson LW. Brain architecture: understanding the basic plan, 2012). The complete formulation of the human brain circuit diagram (BCD [Front Neuroanat. 2020;14:18]) has been hampered by an inability to determine connections in their entirety (i.e., not only pathway stems but also origins and terminations). From a structural point of view, a neuroanatomic formulation of the BCD should include the origins and terminations of each fiber tract as well as the topographic course of the fiber tract in three dimensions. Classic neuroanatomical studies have provided trajectory information for pathway stems and their speculative origins and terminations [Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux, 1901; Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux: Méthodes générales d'étude-embryologie-histogénèse et histologie. Anatomie du cerveau, 1895; Ludwig E and Klingler J. Atlas cerebri humani, 1956; Makris N. Delineation of human association fiber pathways using histologic and magnetic resonance methodologies; 1999; Neuroimage. 1999 Jan;9(1):18-45]. We have summarized these studies previously [Neuroimage. 1999 Jan;9(1):18-45] and present them here in a macroscale-level human cerebral structural connectivity matrix. A matrix in the present context is an organizational construct that embodies anatomical knowledge about cortical areas and their connections. This is represented in relation to parcellation units according to the Harvard-Oxford Atlas neuroanatomical framework established by the Center for Morphometric Analysis at Massachusetts General Hospital in the early 2000s, which is based on the MRI volumetrics paradigm of Dr. Verne Caviness and colleagues [Brain Dev. 1999 Jul;21(5):289-95]. This is a classic connectional matrix based mainly on data predating the advent of DTI tractography, which we refer to as the "pre-DTI era" human structural connectivity matrix. In addition, we present representative examples that incorporate validated structural connectivity information from nonhuman primates and more recent information on human structural connectivity emerging from DTI tractography studies. We refer to this as the "DTI era" human structural connectivity matrix. This newer matrix represents a work in progress and is necessarily incomplete due to the lack of validated human connectivity findings on origins and terminations as well as pathway stems. Importantly, we use a neuroanatomical typology to characterize different types of connections in the human brain, which is critical for organizing the matrices and the prospective database. Although substantial in detail, the present matrices may be assumed to be only partially complete because the sources of data relating to human fiber system organization are limited largely to inferences from gross dissections of anatomic specimens or extrapolations of pathway tracing information from nonhuman primate experiments [Front Neuroanat. 2020;14:18, Front Neuroanat. 2022;16:1035420, and Brain Imaging Behav. 2021;15(3):1589-1621]. These matrices, which embody a systematic description of cerebral connectivity, can be used in cognitive and clinical studies in neuroscience and, importantly, to guide research efforts for further elucidating, validating, and completing the human BCD [Front Neuroanat. 2020;14:18].


Asunto(s)
Imagen de Difusión Tensora , Neurociencias , Animales , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo , Imagen por Resonancia Magnética , Vías Nerviosas
5.
Psychol Med ; 53(10): 4707-4719, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35796024

RESUMEN

BACKGROUND: While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS: Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS: Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS: We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Sustancia Blanca , Adulto , Masculino , Humanos , Femenino , Adolescente , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Encéfalo/patología
6.
Mol Psychiatry ; 27(9): 3719-3730, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982257

RESUMEN

Cognitive deficits are among the best predictors of real-world functioning in schizophrenia. However, our understanding of how cognitive deficits relate to neuropathology and clinical presentation over the disease lifespan is limited. Here, we combine multi-site, harmonized cognitive, imaging, demographic, and clinical data from over 900 individuals to characterize a) cognitive deficits across the schizophrenia lifespan and b) the association between cognitive deficits, clinical presentation, and white matter (WM) microstructure. Multimodal harmonization was accomplished using T-scores for cognitive data, previously reported standardization methods for demographic and clinical data, and an established harmonization method for imaging data. We applied t-tests and correlation analysis to describe cognitive deficits in individuals with schizophrenia. We then calculated whole-brain WM fractional anisotropy (FA) and utilized regression-mediation analyses to model the association between diagnosis, FA, and cognitive deficits. We observed pronounced cognitive deficits in individuals with schizophrenia (p < 0.006), associated with more positive symptoms and medication dosage. Regression-mediation analyses showed that WM microstructure mediated the association between schizophrenia and language/processing speed/working memory/non-verbal memory. In addition, processing speed mediated the influence of diagnosis and WM microstructure on the other cognitive domains. Our study highlights the critical role of cognitive deficits in schizophrenia. We further show that WM is crucial when trying to understand the role of cognitive deficits, given that it explains the association between schizophrenia and cognitive deficits (directly and via processing speed).


Asunto(s)
Trastornos del Conocimiento , Esquizofrenia , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Esquizofrenia/patología , Imagen de Difusión Tensora , Trastornos del Conocimiento/complicaciones , Anisotropía , Cognición , Encéfalo/patología
7.
Mol Psychiatry ; 27(4): 2052-2060, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35145230

RESUMEN

Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = -0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = -0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts.


Asunto(s)
Esquizofrenia , Encéfalo , Corteza Cerebral , Células Endoteliales , Humanos , Imagen por Resonancia Magnética , Herencia Multifactorial , Esquizofrenia/genética
8.
Sensors (Basel) ; 23(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38139474

RESUMEN

The atmospheric electric current, "air-earth current", flows between the low ionosphere and Earth's surface. The source of this current is the potential difference between the global equalizing layer called the ionosphere and the ground surface. According to Wilson's concept of the Earth's Global Electric Circuit, in the areas of so-called fair weather, based on current measurements at the Earth's surface, it is possible to conclude the global electrical processes in the ionosphere and higher layers. The theoretical basis for this inference is the law of continuity of electric current or the principle of conservation of electric charge. We present the results of simulations of the distribution of electric field lines for sensors with different geometries placed in a uniform electric field, representing the atmospheric electric field. The sensors are metal surfaces on which electric charges are induced or deposited. In the external measuring circuit to which the sensor is connected, an electric current [A] will flow, related to the air-earth current density [A/m2], but their relationship may be challenging to interpret. We analyze the impact of sensor geometry on the possibility of interpreting the atmospheric electric conduction and atmospheric displacement current based on the current measured in the external circuit. This present method can be used for the geometric construction of new sensors at the stage of determining the electrical characteristics of the sensor (e.g., effective collecting area). It can support the comprehensive design of a measurement system at the interface between an atmosphere, sensor, and electronic equipment.

9.
Mol Psychiatry ; 26(9): 5357-5370, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33483689

RESUMEN

White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.


Asunto(s)
Esquizofrenia , Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Demografía , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen
10.
Mol Psychiatry ; 26(11): 6833-6844, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34024906

RESUMEN

Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However, the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis (CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U; 596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and illness-onset on variation in the fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). Baseline measures of white matter microstructure did not differentiate between HC, CHR-U and CHR-P individuals. However, age trajectories differed between the three groups in line with a developmental effect: CHR-P and CHR-U groups displayed higher FAT in adolescence, and 4% lower FAT by 30 years of age compared to controls. Furthermore, older CHR-P subjects (20+ years) displayed 4% higher FW in the forceps major (p < 0.05). Prospective analysis in CHR-P did not reveal a significant impact of illness onset on regional FAT or FW, suggesting that transition to psychosis is not marked by dramatic change in white matter microstructure. Instead, clinical high risk for psychosis-regardless of transition outcome-is characterized by subtle age-related white matter changes that occur in tandem with development.


Asunto(s)
Trastornos Psicóticos , Sustancia Blanca , Adolescente , Adulto , Niño , Preescolar , Cuerpo Calloso/patología , Humanos , Estudios Longitudinales , Síntomas Prodrómicos , Trastornos Psicóticos/patología , Sustancia Blanca/patología , Adulto Joven
11.
Cereb Cortex ; 31(1): 201-212, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32851404

RESUMEN

Axonal myelination and repair, critical processes for brain development, maturation, and aging, remain controlled by sexual hormones. Whether this influence is reflected in structural brain differences between sexes, and whether it can be quantified by neuroimaging, remains controversial. Diffusion-weighted magnetic resonance imaging (dMRI) is an in vivo method that can track myelination changes throughout the lifespan. We utilize a large, multisite sample of harmonized dMRI data (n = 551, age = 9-65 years, 46% females/54% males) to investigate the influence of sex on white matter (WM) structure. We model lifespan trajectories of WM using the most common dMRI measure fractional anisotropy (FA). Next, we examine the influence of both age and sex on FA variability. We estimate the overlap between male and female FA and test whether it is possible to label individual brains as male or female. Our results demonstrate regionally and spatially specific effects of sex. Sex differences are limited to limbic structures and young ages. Additionally, not only do sex differences diminish with age, but tracts within each subject become more similar to one another. Last, we show the high overlap in FA between sexes, which implies that determining sex based on WM remains open.


Asunto(s)
Caracteres Sexuales , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Anciano , Envejecimiento , Anisotropía , Axones/fisiología , Niño , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Humanos , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiología , Masculino , Persona de Mediana Edad , Vaina de Mielina/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto Joven
12.
Hum Brain Mapp ; 42(14): 4658-4670, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34322947

RESUMEN

Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group-level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject-level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject-level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free-water) dMRI measures, were calculated by means of age and sex-adjusted z-scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z-scores than are found with raw values (p < .001), predictions based on summary z-score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject-level classification.


Asunto(s)
Imagen de Difusión Tensora/normas , Aprendizaje Automático , Esquizofrenia/clasificación , Esquizofrenia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Medicina de Precisión , Valor Predictivo de las Pruebas , Esquizofrenia/patología , Sustancia Blanca/patología , Adulto Joven
13.
Psychol Med ; 51(3): 485-493, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31769368

RESUMEN

BACKGROUND: Functional neurological disorder (FND) is a condition at the intersection of neurology and psychiatry. Individuals with FND exhibit corticolimbic abnormalities, yet little is known about the role of white matter tracts in the pathophysiology of FND. This study characterized between-group differences in microstructural integrity, and correlated fiber bundle integrity with symptom severity, physical disability, and illness duration. METHODS: A diffusion tensor imaging (DTI) study was performed in 32 patients with mixed FND compared to 36 healthy controls. Diffusion-weighted magnetic resonance images were collected along with patient-reported symptom severity, physical disability (Short Form Health Survey-36), and illness duration data. Weighted-degree and link-level graph theory and probabilistic tractography analyses characterized fractional anisotropy (FA) values across cortico-subcortical connections. Results were corrected for multiple comparisons. RESULTS: Compared to controls, FND patients showed reduced FA in the stria terminalis/fornix, medial forebrain bundle, extreme capsule, uncinate fasciculus, cingulum bundle, corpus callosum, and striatal-postcentral gyrus projections. Except for the stria terminalis/fornix, these differences remained significant adjusting for depression and anxiety. In within-group analyses, physical disability inversely correlated with stria terminalis/fornix and medial forebrain bundle FA values; illness duration negatively correlated with stria terminalis/fornix white matter integrity. A FND symptom severity composite score did not correlate with FA in patients. CONCLUSIONS: In this first DTI study of mixed FND, microstructural differences were observed in limbic and associative tracts implicated in salience, defensive behaviors, and emotion regulation. These findings advance our understanding of neurocircuit pathways in the pathophysiology of FND.


Asunto(s)
Encéfalo/fisiopatología , Imagen de Difusión Tensora , Enfermedades del Sistema Nervioso/fisiopatología , Adulto , Estudios de Casos y Controles , Cuerpo Calloso/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Sustancia Blanca/fisiopatología
14.
Mol Psychiatry ; 25(12): 3208-3219, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31511636

RESUMEN

Several prominent theories of schizophrenia suggest that structural white matter pathologies may follow a developmental, maturational, and/or degenerative process. However, a lack of lifespan studies has precluded verification of these theories. Here, we analyze the largest sample of carefully harmonized diffusion MRI data to comprehensively characterize age-related white matter trajectories, as measured by fractional anisotropy (FA), across the course of schizophrenia. Our analysis comprises diffusion scans of 600 schizophrenia patients and 492 healthy controls at different illness stages and ages (14-65 years), which were gathered from 13 sites. We determined the pattern of age-related FA changes by cross-sectionally assessing the timing of the structural neuropathology associated with schizophrenia. Quadratic curves were used to model between-group FA differences across whole-brain white matter and fiber tracts at each age; fiber tracts were then clustered according to both the effect-sizes and pattern of lifespan white matter FA differences. In whole-brain white matter, FA was significantly lower across the lifespan (up to 7%; p < 0.0033) and reached peak maturation younger in patients (27 years) compared to controls (33 years). Additionally, three distinct patterns of neuropathology emerged when investigating white matter fiber tracts in patients: (1) developmental abnormalities in limbic fibers, (2) accelerated aging and abnormal maturation in long-range association fibers, (3) severe developmental abnormalities and accelerated aging in callosal fibers. Our findings strongly suggest that white matter in schizophrenia is affected across entire stages of the disease. Perhaps most strikingly, we show that white matter changes in schizophrenia involve dynamic interactions between neuropathological processes in a tract-specific manner.


Asunto(s)
Esquizofrenia , Sustancia Blanca , Adolescente , Adulto , Anciano , Anisotropía , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Humanos , Longevidad , Persona de Mediana Edad , Esquizofrenia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
15.
Cereb Cortex ; 30(12): 6191-6205, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32676671

RESUMEN

Early neuroimaging work in twin studies focused on studying genetic and environmental influence on gray matter macrostructure. However, it is also important to understand how gray matter microstructure is influenced by genes and environment to facilitate future investigations of their influence in mental disorders. Advanced diffusion MRI (dMRI) measures allow more accurate assessment of gray matter microstructure compared with conventional diffusion tensor measures. To understand genetic and environmental influence on gray matter, we used diffusion and structural MRI data from a large twin and sibling study (N = 840) and computed advanced dMRI measures including return to origin probability (RTOP), which is heavily weighted toward intracellular and intra-axonal restricted spaces, and mean squared displacement (MSD), more heavily weighted to diffusion in extracellular space and large cell bodies in gray matter. We show that while macrostructural features like brain volume are mainly genetically influenced, RTOP and MSD can together tap into both genetic and environmental influence on microstructure.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Interacción Gen-Ambiente , Sustancia Gris/anatomía & histología , Sustancia Gris/crecimiento & desarrollo , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Adulto Joven
16.
Psychol Med ; 50(3): 403-412, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30782233

RESUMEN

BACKGROUND: Auditory verbal hallucinations (AVH) are a cardinal feature of schizophrenia, but they can also appear in otherwise healthy individuals. Imaging studies implicate language networks in the generation of AVH; however, it remains unclear if alterations reflect biologic substrates of AVH, irrespective of diagnostic status, age, or illness-related factors. We applied multimodal imaging to identify AVH-specific pathology, evidenced by overlapping gray or white matter deficits between schizophrenia patients and healthy voice-hearers. METHODS: Diffusion-weighted and T1-weighted magnetic resonance images were acquired in 35 schizophrenia patients with AVH (SCZ-AVH), 32 healthy voice-hearers (H-AVH), and 40 age- and sex-matched controls without AVH. White matter fractional anisotropy (FA) and gray matter thickness (GMT) were computed for each region comprising ICBM-DTI and Desikan-Killiany atlases, respectively. Regions were tested for significant alterations affecting both SCZ-AVH and H-AVH groups, relative to controls. RESULTS: Compared with controls, the SCZ-AVH showed widespread FA and GMT reductions; but no significant differences emerged between H-AVH and control groups. While no overlapping pathology appeared in the overall study groups, younger (<40 years) H-AVH and SCZ-AVH subjects displayed overlapping FA deficits across four regions (p < 0.05): the genu and splenium of the corpus callosum, as well as the anterior limbs of the internal capsule. Analyzing these regions with free-water imaging ascribed overlapping FA abnormalities to tissue-specific anisotropy changes. CONCLUSIONS: We identified white matter pathology associated with the presence of AVH, independent of diagnostic status. However, commonalities were constrained to younger and more homogenous groups, after reducing pathologic variance associated with advancing age and chronicity effects.


Asunto(s)
Alucinaciones/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Estudios de Casos y Controles , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Imagen de Difusión Tensora , Femenino , Alucinaciones/patología , Alucinaciones/psicología , Humanos , Cápsula Interna/diagnóstico por imagen , Cápsula Interna/patología , Masculino , Persona de Mediana Edad , Esquizofrenia/complicaciones , Esquizofrenia/patología , Sustancia Blanca/patología
17.
Neuroimage ; 184: 180-200, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30205206

RESUMEN

A joint and integrated analysis of multi-site diffusion MRI (dMRI) datasets can dramatically increase the statistical power of neuroimaging studies and enable comparative studies pertaining to several brain disorders. However, dMRI data sets acquired on multiple scanners cannot be naively pooled for joint analysis due to scanner specific nonlinear effects as well as differences in acquisition parameters. Consequently, for joint analysis, the dMRI data has to be harmonized, which involves removing scanner-specific differences from the raw dMRI signal. In this work, we propose a dMRI harmonization method that is capable of removing scanner-specific effects, while accounting for minor differences in acquisition parameters such as b-value, spatial resolution and number of gradient directions. We validate our algorithm on dMRI data acquired from two sites: Philadelphia Neurodevelopmental Cohort (PNC) with 800 healthy adolescents (ages 8-22 years) and Brigham and Women's Hospital (BWH) with 70 healthy subjects (ages 14-54 years). In particular, we show that gender and age-related maturation differences in different age groups are preserved after harmonization, as measured using effect sizes (small, medium and large), irrespective of the test sample size. Since we use matched control subjects from different scanners to estimate scanner-specific effects, our goal in this work is also to determine the minimum number of well-matched subjects needed from each site to achieve best harmonization results. Our results indicate that at-least 16 to 18 well-matched healthy controls from each site are needed to reliably capture scanner related differences. The proposed method can thus be used for retrospective harmonization of raw dMRI data across sites despite differences in acquisition parameters, while preserving inter-subject anatomical variability.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador , Adolescente , Adulto , Factores de Edad , Algoritmos , Artefactos , Niño , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Caracteres Sexuales , Adulto Joven
18.
Hum Brain Mapp ; 40(4): 1221-1233, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548738

RESUMEN

Research on age-related memory alterations traditionally targets individuals aged ≥65 years. However, recent studies emphasize the importance of early aging processes. We therefore aimed to characterize variation in brain gray matter structure in early midlife as a function of sex and menopausal status. Subjects included 94 women (33 premenopausal, 29 perimenopausal, and 32 postmenopausal) and 99 demographically comparable men from the New England Family Study. Subjects were scanned with a high-resolution T1 sequence on a 3 T whole body scanner. Sex and reproductive-dependent structural differences were evaluated using Box's M test and analysis of covariances (ANCOVAs) for gray matter volumes. Brain regions of interest included dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (iPAR), anterior cingulate cortex (ACC), hippocampus (HIPP), and parahippocampus. While we observed expected significant sex differences in volume of hippocampus with women of all groups having higher volumes than men relative to cerebrum size, we also found significant differences in the covariance matrices of perimenopausal women compared with postmenopausal women. Associations between ACC and HIPP/iPAR/DLPFC were higher in postmenopausal women and correlated with better memory performance. Findings in this study underscore the importance of sex and reproductive status in early midlife for understanding memory function with aging.


Asunto(s)
Encéfalo/anatomía & histología , Sustancia Gris/anatomía & histología , Posmenopausia , Premenopausia , Envejecimiento/fisiología , Encéfalo/fisiología , Estudios Transversales , Femenino , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Caracteres Sexuales
19.
Neuroimage ; 178: 318-331, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29787865

RESUMEN

Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Sustancia Blanca/anatomía & histología , Imagen de Difusión Tensora/métodos , Humanos , Masculino
20.
Bipolar Disord ; 20(6): 523-530, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29227016

RESUMEN

OBJECTIVES: Bipolar disorder (BP) is a debilitating psychiatric disease that is not well understood. Previous diffusion magnetic resonance imaging (dMRI) studies of BP patients found prominent microstructural white matter (WM) abnormalities of reduced fractional anisotropy (FA). Because FA is a nonspecific measure, relating these abnormalities to a specific pathology is difficult. Here, dMRI specificity was increased by free water (FW) imaging, which allows identification of changes in extracellular space (FW) from neuronal tissue (fractional anisotropy of tissue [FA-t]). Previous studies identified increased FW in early schizophrenia (SZ) stages which was replaced by widespread decreased FA-t in chronic stages. This is the first analysis utilizing this method to compare BP patients and controls. METHODS: 3 Tesla diffusion weighted imaging (3T DWI) data were acquired for 17 chronic BP and 28 healthy control (HC) participants at Oxford University. Tract-based spatial statistics was utilized to generate a WM skeleton. FW imaging deconstructed the diffusion signal into extracellular FW and tissue FA-t maps. These maps were projected onto the skeleton and FA, FA-t, and FW were compared between groups. RESULTS: We found significantly lower FA in BP patients when compared to HC in areas that overlapped with extensive FW increases. There were no FA-t differences. CONCLUSIONS: Our study suggests that chronic BP shows similar WM changes to early SZ, suggesting that extracellular FW increases could be a transient indication of recent psychotic episodes. Since FW increase in SZ has been suggested to be related to neuroinflammation, we theorize that neuroinflammation might be a shared pathology between chronic BP and early SZ.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Espacio Extracelular/diagnóstico por imagen , Agua , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Esquizofrenia/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA