Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Methods ; 19(11): 1357-1366, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36280717

RESUMEN

Dense reconstruction of synaptic connectivity requires high-resolution electron microscopy images of entire brains and tools to efficiently trace neuronal wires across the volume. To generate such a resource, we sectioned and imaged a larval zebrafish brain by serial block-face electron microscopy at a voxel size of 14 × 14 × 25 nm3. We segmented the resulting dataset with the flood-filling network algorithm, automated the detection of chemical synapses and validated the results by comparisons to transmission electron microscopic images and light-microscopic reconstructions. Neurons and their connections are stored in the form of a queryable and expandable digital address book. We reconstructed a network of 208 neurons involved in visual motion processing, most of them located in the pretectum, which had been functionally characterized in the same specimen by two-photon calcium imaging. Moreover, we mapped all 407 presynaptic and postsynaptic partners of two superficial interneurons in the tectum. The resource developed here serves as a foundation for synaptic-resolution circuit analyses in the zebrafish nervous system.


Asunto(s)
Sinapsis , Pez Cebra , Animales , Larva , Sinapsis/ultraestructura , Encéfalo/ultraestructura , Microscopía Electrónica
2.
Methods ; 150: 42-48, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30194033

RESUMEN

All-optical methods enable the control and monitoring of neuronal activity with minimal perturbation of the system. Although imaging and optogenetic manipulations can be performed at cellular resolution, the morphology of single cells in a dense neuronal population has often remained unresolvable. Here we describe in detail two recently established optogenetic protocols for systematic description of function and morphology of single neurons in zebrafish. First, the Optobow toolbox allows unbiased mapping of excitatory functional connectivity. Second, the FuGIMA technique enables selective labeling and anatomical tracing of neurons that are responsive to a given sensory stimulus or correlated with a specific behavior. Both strategies can be genetically targeted to a neuronal population of choice using the Gal4/UAS system. As these in vivo approaches are non-invasive, we envision useful applications for the study of neuronal structure, function and connectivity during development and behavior.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Optogenética/métodos , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Técnicas Biosensibles/métodos , Encéfalo/citología , Encéfalo/fisiología , Calcio/química , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/efectos de la radiación , Red Nerviosa/citología , Estimulación Luminosa/métodos , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
3.
Sci Rep ; 12(1): 16311, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175429

RESUMEN

Spontaneous activity during the early postnatal period is thought to be crucial for the establishment of mature neural circuits. It remains unclear if the peripheral structure of the developing somatosensory system exhibits spontaneous activity, similar to that observed in the retina and cochlea of developing mammals. By establishing an ex vivo calcium imaging system, here we found that neurons in the whisker-innervating region of the trigeminal ganglion (TG) of neonatal mice generate spontaneous activity. A small percentage of neurons showed some obvious correlated activity, and these neurons were mostly located close to one another. TG spontaneous activity was majorly exhibited by medium-to-large diameter neurons, a characteristic of mechanosensory neurons, and was blocked by chelation of extracellular calcium. Moreover, this activity was diminished by the adult stage. Spontaneous activity in the TG during the first postnatal week could be a source of spontaneous activity observed in the neonatal mouse barrel cortex.


Asunto(s)
Ganglio del Trigémino , Vibrisas , Animales , Animales Recién Nacidos , Calcio , Calcio de la Dieta , Mamíferos
4.
Dev Dyn ; 239(9): 2492-500, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20730907

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors play important roles in cell type specification and differentiation during the development of the nervous system. In this study, we identified a chicken homolog of Atonal 8/ath6 (Cath6) and examined its role in the developing retina. Unlike other Atonal-family proneural genes that induce neuronal differentiation, Cath6 was expressed in stem cell-like progenitor cells in the marginal region of the retina, and its overexpression inhibited neuronal differentiation. A Cath6 fused with a VP16 transactivation domain recapitulated the inhibitory effect of Cath6 on neuronal differentiation, indicating that Cath6 functions as a transcription activator. These results demonstrate that Cath6 constitutes a unique member of the Atonal-family of genes in that it acts as a negative regulator of neuronal differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Neuronas/fisiología , Retina/citología , Retina/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Filogenia , Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética
5.
Brain Nerve ; 73(11): 1237-1241, 2021 Nov.
Artículo en Japonés | MEDLINE | ID: mdl-34759061

RESUMEN

An optical illusion represents a perception that deviates from the actual visual information of the visualized scene and is considered to be generated by an error in visual processing in the brain. The mechanisms by which optical illusions are generated have attracted the interest of scientists for many years. In this review, I focus on a vertebrate model, the zebrafish, and discuss how research using zebrafish has uncovered the mechanisms underlying optical illusions, and how optical illusions serve as a tool to help us understand how normal visual processing works in the brain.


Asunto(s)
Ilusiones , Percepción de Movimiento , Ilusiones Ópticas , Animales , Encéfalo , Percepción Visual , Pez Cebra
6.
Front Neural Circuits ; 15: 709048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366797

RESUMEN

Animals' self-motion generates a drifting movement of the visual scene in the entire field of view called optic flow. Animals use the sensation of optic flow to estimate their own movements and accordingly adjust their body posture and position and stabilize the direction of gaze. In zebrafish and other vertebrates, optic flow typically drives the optokinetic response (OKR) and optomotor response (OMR). Recent functional imaging studies in larval zebrafish have identified the pretectum as a primary center for optic flow processing. In contrast to the view that the pretectum acts as a relay station of direction-selective retinal inputs, pretectal neurons respond to much more complex visual features relevant to behavior, such as spatially and temporally integrated optic flow information. Furthermore, optic flow signals, as well as motor signals, are represented in the cerebellum in a region-specific manner. Here we review recent findings on the circuit organization that underlies the optic flow processing driving OKR and OMR.


Asunto(s)
Cerebelo/fisiología , Red Nerviosa/fisiología , Flujo Optico/fisiología , Vías Visuales/fisiología , Animales , Movimientos Oculares/fisiología , Humanos , Estimulación Luminosa/métodos , Pez Cebra
7.
Neuron ; 108(4): 722-734.e5, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32966764

RESUMEN

Direction-selective (DS) neurons compute the direction of motion in a visual scene. Brain-wide imaging in larval zebrafish has revealed hundreds of DS neurons scattered throughout the brain. However, the exact population that causally drives motion-dependent behaviors-e.g., compensatory eye and body movements-remains largely unknown. To identify the behaviorally relevant population of DS neurons, here we employ the motion aftereffect (MAE), which causes the well-known "waterfall illusion." Together with region-specific optogenetic manipulations and cellular-resolution functional imaging, we found that MAE-responsive neurons represent merely a fraction of the entire population of DS cells in larval zebrafish. They are spatially clustered in a nucleus in the ventral lateral pretectal area and are necessary and sufficient to steer the entire cycle of optokinetic eye movements. Thus, our illusion-based behavioral paradigm, combined with optical imaging and optogenetics, identified key circuit elements of global motion processing in the vertebrate brain.


Asunto(s)
Postimagen/fisiología , Percepción de Movimiento/fisiología , Ilusiones Ópticas/fisiología , Área Pretectal/fisiología , Animales , Animales Modificados Genéticamente , Movimientos Oculares/fisiología , Neuroimagen/métodos , Optogenética , Estimulación Luminosa , Pez Cebra
8.
Elife ; 92020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32216873

RESUMEN

Optogenetic actuators with diverse spectral tuning, ion selectivity and kinetics are constantly being engineered providing powerful tools for controlling neural activity with subcellular resolution and millisecond precision. Achieving reliable and interpretable in vivo optogenetic manipulations requires reproducible actuator expression and calibration of photocurrents in target neurons. Here, we developed nine transgenic zebrafish lines for stable opsin expression and calibrated their efficacy in vivo. We first used high-throughput behavioural assays to compare opsin ability to elicit or silence neural activity. Next, we performed in vivo whole-cell electrophysiological recordings to quantify the amplitude and kinetics of photocurrents and test opsin ability to precisely control spiking. We observed substantial variation in efficacy, associated with differences in both opsin expression level and photocurrent characteristics, and identified conditions for optimal use of the most efficient opsins. Overall, our calibrated optogenetic toolkit will facilitate the design of controlled optogenetic circuit manipulations.


Asunto(s)
Opsinas/genética , Optogenética , Animales , Animales Modificados Genéticamente , Calibración , Cloruros/metabolismo , Reacción de Fuga , Neuronas Motoras/fisiología , Bombas de Protones/fisiología , Rodopsina/fisiología , Ganglio del Trigémino/embriología , Pez Cebra/embriología
9.
Neuron ; 103(1): 118-132.e7, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31147153

RESUMEN

Animals use global image motion cues to actively stabilize their position by compensatory movements. Neurons in the zebrafish pretectum distinguish different optic flow patterns, e.g., rotation and translation, to drive appropriate behaviors. Combining functional imaging and morphological reconstruction of single cells, we revealed critical neuroanatomical features of this sensorimotor transformation. Terminals of direction-selective retinal ganglion cells (DS-RGCs) are located within the pretectal retinal arborization field 5 (AF5), where they meet dendrites of pretectal neurons with simple tuning to monocular optic flow. Translation-selective neurons, which respond selectively to optic flow in the same direction for both eyes, are intermingled with these simple cells but do not receive inputs from DS-RGCs. Mutually exclusive populations of pretectal projection neurons innervate either the reticular formation or the cerebellum, which in turn control motor responses. We posit that local computations in a defined pretectal circuit transform optic flow signals into neural commands driving optomotor behavior. VIDEO ABSTRACT.


Asunto(s)
Flujo Optico/fisiología , Vías Visuales/citología , Animales , Cerebelo/citología , Cerebelo/fisiología , Dendritas/fisiología , Neurópilo/fisiología , Neurópilo/ultraestructura , Terminales Presinápticos/fisiología , Formación Reticular/citología , Formación Reticular/fisiología , Células Ganglionares de la Retina/fisiología , Colículos Superiores/citología , Colículos Superiores/fisiología , Visión Binocular/fisiología , Visión Monocular/fisiología , Vías Visuales/anatomía & histología , Pez Cebra/fisiología
10.
Neuron ; 103(1): 21-38.e5, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31147152

RESUMEN

Understanding brain-wide neuronal dynamics requires a detailed map of the underlying circuit architecture. We built an interactive cellular-resolution atlas of the zebrafish brain at 6 days post-fertilization (dpf) based on the reconstructions of over 2,000 individually GFP-labeled neurons. We clustered our dataset in "morphotypes," establishing a unique database of quantitatively described neuronal morphologies together with their spatial coordinates in vivo. Over 100 transgene expression patterns were imaged separately and co-registered with the single-neuron atlas. By annotating 72 non-overlapping brain regions, we generated from our dataset an inter-areal wiring diagram of the larval brain, which serves as ground truth for synapse-scale, electron microscopic reconstructions. Interrogating our atlas by "virtual tract tracing" has already revealed previously unknown wiring principles in the tectum and the cerebellum. In conclusion, we present here an evolving computational resource and visualization tool, which will be essential to map function to structure in a vertebrate brain. VIDEO ABSTRACT.


Asunto(s)
Atlas como Asunto , Encéfalo/anatomía & histología , Encéfalo/citología , Pez Cebra/anatomía & histología , Animales , Encéfalo/ultraestructura , Mapeo Encefálico , Cerebelo/anatomía & histología , Conectoma , Expresión Génica , Proteínas Fluorescentes Verdes , Larva/anatomía & histología , Larva/citología , Neuronas/ultraestructura , Transgenes , Vías Visuales/anatomía & histología
11.
Dev Growth Differ ; 50(4): 245-51, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18366385

RESUMEN

In the vertebrate retina, stem cells with prolonged proliferative capacities reside in the most peripheral region, the ciliary marginal zone (CMZ), and they persist even after the functional eye has formed. These stem cells contribute to the formation of the retinal structures during the postnatal period in vivo, or can expand as neurospheres in vitro. Despite the wealth of anatomical descriptions of the characteristics of CMZ cells, molecular mechanisms for their specification or maintenance have long been uncharacterized. Recent studies provide evidence that certain secreted signaling molecules act as key regulators at multiple steps during these processes. In this review, we discuss the molecular basis for the regulation of retinal stem cells and their related cell types, especially focusing on the role of Wnt signaling.


Asunto(s)
Regeneración , Retina/citología , Retina/fisiología , Células Madre/citología , Proteínas Wnt/metabolismo , Animales , Diferenciación Celular , Transducción de Señal , Células Madre/metabolismo
12.
Sci Rep ; 7(1): 5230, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701772

RESUMEN

Genetic access to small, reproducible sets of neurons is key to an understanding of the functional wiring of the brain. Here we report the generation of a new Gal4- and Cre-driver resource for zebrafish neurobiology. Candidate genes, including cell type-specific transcription factors, neurotransmitter-synthesizing enzymes and neuropeptides, were selected according to their expression patterns in small and unique subsets of neurons from diverse brain regions. BAC recombineering, followed by Tol2 transgenesis, was used to generate driver lines that label neuronal populations in patterns that, to a large but variable extent, recapitulate the endogenous gene expression. We used image registration to characterize, compare, and digitally superimpose the labeling patterns from our newly generated transgenic lines. This analysis revealed highly restricted and mutually exclusive tissue distributions, with striking resolution of layered brain regions such as the tectum or the rhombencephalon. We further show that a combination of Gal4 and Cre transgenes allows intersectional expression of a fluorescent reporter in regions where the expression of the two drivers overlaps. Taken together, our study offers new tools for functional studies of specific neural circuits in zebrafish.


Asunto(s)
Encéfalo/fisiología , Cromosomas Artificiales Bacterianos , Marcación de Gen , Neuronas/fisiología , Transgenes , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
13.
Neuron ; 89(4): 725-33, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26833134

RESUMEN

Autism spectrum disorders (ASDs) are a group of devastating neurodevelopmental syndromes that affect up to 1 in 68 children. Despite advances in the identification of ASD risk genes, the mechanisms underlying ASDs remain unknown. Homozygous loss-of-function mutations in Contactin Associated Protein-like 2 (CNTNAP2) are strongly linked to ASDs. Here we investigate the function of Cntnap2 and undertake pharmacological screens to identify phenotypic suppressors. We find that zebrafish cntnap2 mutants display GABAergic deficits, particularly in the forebrain, and sensitivity to drug-induced seizures. High-throughput behavioral profiling identifies nighttime hyperactivity in cntnap2 mutants, while pharmacological testing reveals dysregulation of GABAergic and glutamatergic systems. Finally, we find that estrogen receptor agonists elicit a behavioral fingerprint anti-correlative to that of cntnap2 mutants and show that the phytoestrogen biochanin A specifically reverses the mutant behavioral phenotype. These results identify estrogenic compounds as phenotypic suppressors and illuminate novel pharmacological pathways with relevance to autism.


Asunto(s)
Trastorno Autístico/tratamiento farmacológico , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Animales , Animales Modificados Genéticamente , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Estrógenos/uso terapéutico , Genisteína/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Larva , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Fenotipo , Fitoestrógenos/farmacología , Psicotrópicos/farmacología , Psicotrópicos/uso terapéutico , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Trastornos de la Transición Sueño-Vigilia/tratamiento farmacológico , Trastornos de la Transición Sueño-Vigilia/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Pez Cebra
14.
Neuron ; 81(6): 1344-1359, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24656253

RESUMEN

Animals respond to whole-field visual motion with compensatory eye and body movements in order to stabilize both their gaze and position with respect to their surroundings. In zebrafish, rotational stimuli need to be distinguished from translational stimuli to drive the optokinetic and the optomotor responses, respectively. Here, we systematically characterize the neural circuits responsible for these operations using a combination of optogenetic manipulation and in vivo calcium imaging during optic flow stimulation. By recording the activity of thousands of neurons within the area pretectalis (APT), we find four bilateral pairs of clusters that process horizontal whole-field motion and functionally classify eleven prominent neuron types with highly selective response profiles. APT neurons are prevalently direction selective, either monocularly or binocularly driven, and hierarchically organized to distinguish between rotational and translational optic flow. Our data predict a wiring diagram of a neural circuit tailored to drive behavior that compensates for self-motion.


Asunto(s)
Movimientos Oculares/fisiología , Neuronas/fisiología , Flujo Optico/fisiología , Vías Visuales/fisiología , Pez Cebra/fisiología , Animales , Percepción de Movimiento/fisiología , Nistagmo Optoquinético/fisiología , Estimulación Luminosa/métodos , Campos Visuales/fisiología
15.
Invest Ophthalmol Vis Sci ; 51(10): 5328-35, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20463321

RESUMEN

PURPOSE: Development of the retinal pigment epithelium (RPE) is controlled by intrinsic and extrinsic regulators including orthodenticle homeobox 2 (Otx2) and the Wnt/ß-catenin pathway, respectively. Otx2 and ß-catenin are necessary for the expression of the RPE key regulator microphthalmia-associated transcription factor (Mitf); however, neither factor is sufficient to promote Mitf expression in vivo. The study was conducted to determine whether Otx2 and ß-catenin act in a combinatorial manner and tested whether co-expression in the presumptive chick retina induces ectopic Mitf expression. METHODS: The sufficiency of Wnt/ß-catenin activation and/or Otx2 expression to induce RPE-specific gene expression was examined in chick optic vesicle explant cultures or in the presumptive neural retina using in ovo-electroporation. Luciferase assays were used to examine the transactivation potentials of Otx2 and ß-catenin on the Mitf-D enhancer and autoregulation of the Mitf-D and Otx2T0 enhancers. RESULTS: In optic vesicles explant cultures, RPE-specific gene expression was activated by lithium chloride, a Wnt/ß-catenin agonist. However, in vivo, Mitf was induced only in the presumptive retina if both ß-catenin and Otx2 are co-expressed. Furthermore, both Mitf and Otx2 can autoregulate their own enhancers in vitro. CONCLUSIONS: The present study provides evidence that ß-catenin and Otx2 are sufficient, at least in part, to convert retinal progenitor cells into presumptive RPE cells expressing Mitf. Otx2 may act as a competence factor that allows RPE specification in concert with additional RPE-promoting factors such as ß-catenin.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Factor de Transcripción Asociado a Microftalmía/genética , Factores de Transcripción Otx/genética , Retina/embriología , Epitelio Pigmentado de la Retina/citología , Transfección , beta Catenina/genética , Animales , Recuento de Células , Diferenciación Celular , Células Cultivadas , Embrión de Pollo , Electroporación , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Confocal , Plásmidos , Neuronas Retinianas/citología , Epitelio Pigmentado de la Retina/metabolismo , Activación Transcripcional , Proteínas Wnt/genética
16.
Development ; 136(11): 1823-33, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19386663

RESUMEN

In the vertebrate retina, stem cell-like progenitor cells are maintained in a distinct region called the ciliary marginal zone (CMZ). Canonical Wnt signaling regulates the maintenance of the progenitor cells in the CMZ. However, its downstream molecular mechanisms have remained largely unclear. Here, we show that chick Hairy1, an established Notch signaling effector, mediates the Wnt-dependent maintenance of CMZ progenitor cells in chicken. Interestingly, unlike other developmental contexts in which Hes gene expression is regulated by Notch signaling, Hairy1 expression in the CMZ is regulated by Wnt signaling. Hairy1 is necessary and sufficient for the expression of a set of molecular markers characteristic of the CMZ, and Wnt2b fails to induce CMZ markers when Hairy1 activity is inhibited. Furthermore, microarray analysis identifies multiple Wnt-responsive transcription factors that activate Hairy1 expression. We thus propose that Hairy1 functions as a node downstream of Wnt signaling to maintain progenitor cells in the chick CMZ.


Asunto(s)
Proteínas Aviares/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Retina/citología , Células Madre/citología , Proteínas Wnt/fisiología , Animales , Proteínas Aviares/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Embrión de Pollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Notch/fisiología , Retina/embriología , Retina/fisiología , Células Madre/fisiología
17.
Development ; 132(12): 2759-70, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15901663

RESUMEN

During the development of the central nervous system, cell proliferation and differentiation are precisely regulated. In the vertebrate eye, progenitor cells located in the marginal-most region of the neural retina continue to proliferate for a much longer period compared to the ones in the central retina, thus showing stem-cell-like properties. Wnt2b is expressed in the anterior rim of the optic vesicles, and has been shown to control differentiation of the progenitor cells in the marginal retina. In this paper, we show that stable overexpression of Wnt2b in retinal explants inhibited cellular differentiation and induced continuous growth of the tissue. Notably, Wnt2b maintained the undifferentiated progenitor cells in the explants even under the conditions where Notch signaling was blocked. Wnt2b downregulated the expression of multiple proneural bHLH genes as well as Notch. In addition, expression of Cath5 under the control of an exogenous promoter suppressed the negative effect of Wnt2b on neuronal differentiation. Importantly, Wnt2b inhibited neuronal differentiation independently of cell cycle progression. We propose that Wnt2b maintains the naive state of marginal progenitor cells by attenuating the expression of both proneural and neurogenic genes, thus preventing those cells from launching out into the differentiation cascade regulated by proneural genes and Notch.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/deficiencia , Neuronas/metabolismo , Retina/citología , Retina/metabolismo , Células Madre/citología , Animales , Proliferación Celular , Embrión de Pollo , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/citología , Receptores Notch , Retina/embriología , Transducción de Señal , Células Madre/metabolismo , Proteínas Wnt
18.
Development ; 130(3): 587-98, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12490564

RESUMEN

The ciliary marginal zone of the vertebrate retina contains undifferentiated progenitor cells that continue to proliferate and add new neurons and glia peripherally during the embryonic stages - even after the formation of a functional retina. To understand the molecular mechanism that controls the prolonged progenitor cell proliferation in the ciliary marginal zone, we employed a candidate molecule approach, focusing on Wnt2b (formerly know as Wnt13), which is expressed in the marginal most tip of the retina. Frizzled 4 and 5, seven-pass transmembrane Wnt receptors, were expressed in the peripheral and central part of the retina, respectively. LEF1, a downstream Wnt signaling component, was expressed at high levels in the ciliary marginal zone with expression gradually decreasing towards the central retina. The LEF1-expressing region, which is where Wnt signaling is supposedly activated, expressed a set of molecular markers that are characteristic of the progenitor cells in the ciliary marginal zone. Overexpression of Wnt2b by use of in ovo electroporation in the central retina inhibited neuronal differentiation and induced the progenitor cell markers. Blocking of the Wnt downstream signaling pathway by a dominant-negative LEF1 inhibited proliferation of the cells in the marginal area, which resulted in their premature neuronal differentiation. The progenitor cells in the ciliary marginal zone differentiated into all the neuronal and glial cell types when cultured in vitro, and they proliferated for a longer period than did centrally located progenitor cells that underwent a limited number of cell divisions. In addition, the proliferation of these progenitor cells was promoted in the presence of Wnt2b. These results suggest that Wnt2b functions to maintain undifferentiated progenitor cells in the ciliary marginal zone, and thus serves as a putative stem cell factor in the retina.


Asunto(s)
Proteínas Proto-Oncogénicas/fisiología , Retina/embriología , Animales , Proteínas Aviares , Diferenciación Celular , Embrión de Pollo , Cuerpo Ciliar/embriología , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Iris/embriología , Factor de Unión 1 al Potenciador Linfoide , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Proteína wnt2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA