Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563662

RESUMEN

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Asunto(s)
Macrófagos , Fagocitosis , Animales , Ratones , Macrófagos/metabolismo , Inflamación/metabolismo , Fagocitos/metabolismo , Proteínas Portadoras/metabolismo , Apoptosis , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Cell ; 181(7): 1445-1449, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32533917

RESUMEN

The COVID19 crisis has magnified the issues plaguing academic science, but it has also provided the scientific establishment with an unprecedented opportunity to reset. Shoring up the foundation of academic science will require a concerted effort between funding agencies, universities, and the public to rethink how we support scientists, with a special emphasis on early career researchers.


Asunto(s)
Movilidad Laboral , Investigadores/tendencias , Investigación/tendencias , Logro , Investigación Biomédica , Humanos , Investigadores/educación , Ciencia/educación , Ciencia/tendencias , Universidades
3.
Cell ; 179(1): 74-89.e10, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31495570

RESUMEN

During neural tube closure and spinal cord development, many cells die in both the central and peripheral nervous systems (CNS and PNS, respectively). However, myeloid-derived professional phagocytes have not yet colonized the trunk region during early neurogenesis. How apoptotic cells are removed from this region during these stages remains largely unknown. Using live imaging in zebrafish, we demonstrate that neural crest cells (NCCs) respond rapidly to dying cells and phagocytose cellular debris around the neural tube. Additionally, NCCs have the ability to enter the CNS through motor exit point transition zones and clear debris in the spinal cord. Surprisingly, NCCs phagocytosis mechanistically resembles macrophage phagocytosis and their recruitment toward cellular debris is mediated by interleukin-1ß. Taken together, our results reveal a role for NCCs in phagocytosis of debris in the developing nervous system before the presence of professional phagocytes.


Asunto(s)
Movimiento Celular/fisiología , Cresta Neural/fisiología , Neurogénesis/fisiología , Sistema Nervioso Periférico/crecimiento & desarrollo , Fagocitosis/fisiología , Médula Espinal/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Apoptosis/fisiología , Diferenciación Celular/fisiología , Interleucina-1beta/metabolismo , Fagocitos/fisiología , Fagosomas/fisiología , Pez Cebra/embriología
4.
Annu Rev Neurosci ; 45: 177-198, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35226828

RESUMEN

Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger ofneurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study.


Asunto(s)
Apoptosis , Fagocitos , Apoptosis/fisiología , Muerte Celular , Homeostasis , Fagocitos/metabolismo , Fagocitosis/fisiología
5.
Dev Biol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944329

RESUMEN

During neural development, sculpting of early formed circuits by cell death and synaptic pruning is necessary to generate a functional and efficient nervous system. This allows for the establishment of rudimentary circuits which necessitate early organism survival to later undergo subsequent refinement. These changes facilitate additional specificity to stimuli which can lead to increased behavioral complexity. In multiple species, Rohon-Beard neurons (RBs) are the earliest mechanosensory neurons specified and are critical in establishing a rudimentary motor response circuit. Sensory input from RBs gradually becomes redundant as dorsal root ganglion (DRG) neurons develop and integrate into motor circuits. Previous studies demonstrate that RBs undergo a dramatic wave of cell death concurrent with development of the DRG. However, contrary to these studies, we show that neurogenin1+ (ngn1) RBs do not undergo a widespread wave of programmed cell death during early zebrafish development and instead persist until at least 15 days post fertilization (dpf). Starting at 2 dpf, we also observed a dramatic medialization and shrinkage of ngn1+ RB somas along with a gradual downregulation of ngn1 in RBs. This alters a fundamental premise of early zebrafish neural development and opens new avenues to explore mechanisms of RB function, persistence, and circuit refinement.

6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197298

RESUMEN

As a vertebrate model organism, zebrafish has many unique advantages in developmental studies, regenerative biology, and disease modeling. However, tissue-specific gene knockout in zebrafish is challenging due to technical difficulties in making floxed alleles. Even when successful, tissue-level knockout can affect too many cells, making it difficult to distinguish cell autonomous from noncell autonomous gene function. Here, we present a genetic system termed zebrafish mosaic analysis with double markers (zMADM). Through Cre/loxP-mediated interchromosomal mitotic recombination of two reciprocally chimeric fluorescent genes, zMADM generates sporadic (<0.5%), GFP+ mutant cells along with RFP+ sibling wild-type cells, enabling phenotypic analysis at single-cell resolution. Using wild-type zMADM, we traced two sibling cells (GFP+ and RFP+) in real time during a dynamic developmental process. Using nf1 mutant zMADM, we demonstrated an overproliferation phenotype of nf1 mutant cells in comparison to wild-type sibling cells in the same zebrafish. The readiness of zMADM to produce sporadic mutant cells without the need to generate floxed alleles should fundamentally improve the throughput of genetic analysis in zebrafish; the lineage-tracing capability combined with phenotypic analysis at the single-cell level should lead to deep insights into developmental and disease mechanisms. Therefore, we are confident that zMADM will enable groundbreaking discoveries once broadly distributed in the field.


Asunto(s)
Linaje de la Célula , Marcadores Genéticos , Mosaicismo , Análisis de la Célula Individual/métodos , Pez Cebra/genética , Animales , Sistemas CRISPR-Cas , Técnicas de Silenciamiento del Gen
7.
Nature ; 563(7733): 714-718, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464343

RESUMEN

Development and routine tissue homeostasis require a high turnover of apoptotic cells. These cells are removed by professional and non-professional phagocytes via efferocytosis1. How a phagocyte maintains its homeostasis while coordinating corpse uptake, processing ingested materials and secreting anti-inflammatory mediators is incompletely understood1,2. Here, using RNA sequencing to characterize the transcriptional program of phagocytes actively engulfing apoptotic cells, we identify a genetic signature involving 33 members of the solute carrier (SLC) family of membrane transport proteins, in which expression is specifically modulated during efferocytosis, but not during antibody-mediated phagocytosis. We assessed the functional relevance of these SLCs in efferocytic phagocytes and observed a robust induction of an aerobic glycolysis program, initiated by SLC2A1-mediated glucose uptake, with concurrent suppression of the oxidative phosphorylation program. The different steps of phagocytosis2-that is, 'smell' ('find-me' signals or sensing factors released by apoptotic cells), 'taste' (phagocyte-apoptotic cell contact) and 'ingestion' (corpse internalization)-activated distinct and overlapping sets of genes, including several SLC genes, to promote glycolysis. SLC16A1 was upregulated after corpse uptake, increasing the release of lactate, a natural by-product of aerobic glycolysis3. Whereas glycolysis within phagocytes contributed to actin polymerization and the continued uptake of corpses, lactate released via SLC16A1 promoted the establishment of an anti-inflammatory tissue environment. Collectively, these data reveal a SLC program that is activated during efferocytosis, identify a previously unknown reliance on aerobic glycolysis during apoptotic cell uptake and show that glycolytic by-products of efferocytosis can influence surrounding cells.


Asunto(s)
Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Fagocitos/metabolismo , Fagocitosis/genética , Transcriptoma/genética , Aerobiosis , Animales , Apoptosis , Línea Celular , Glucólisis , Humanos , Inflamación/genética , Inflamación/prevención & control , Células Jurkat , Fagocitos/citología , Análisis de Secuencia de ARN , Transcripción Genética , Pez Cebra
8.
Dev Biol ; 482: 114-123, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34932993

RESUMEN

Glia are a diverse and essential cell type in the vertebrate nervous system. Transgenic tools and fluorescent reporter lines are critical resources to investigate how glial subtypes develop and function. However, despite the many lines available in zebrafish, the community still lacks the ability to label all unique stages of glial development and specific subpopulations of cells. To address this issue, we screened zebrafish gene and enhancer trap lines to find a novel reporter for peripheral glial subtypes. From these, we generated the gSAIzGFFD37A transgenic line that expresses GFP in neural crest cells and central and peripheral glia. We found that the gene trap construct is located within an intron of erbb3b, a gene essential for glial development. Additionally, we confirmed that GFP+ â€‹cells express erbb3b along with sox10, a known glial marker. From our screen, we have identified the gSAIzGFFD37A line as a novel and powerful tool for studying glia in the developing zebrafish, as well as a new resource to manipulate erbb3b+ â€‹cells.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Cresta Neural/metabolismo , Neurogénesis/fisiología , Neuroglía/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Factores de Transcripción SOXE/biosíntesis , Proteínas de Pez Cebra/biosíntesis
9.
J Neurosci ; 41(25): 5353-5371, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33975920

RESUMEN

Oligodendrocyte progenitor cells (OPCs) are specified from discrete precursor populations during gliogenesis and migrate extensively from their origins, ultimately distributing throughout the brain and spinal cord during early development. Subsequently, a subset of OPCs differentiates into mature oligodendrocytes, which myelinate axons. This process is necessary for efficient neuronal signaling and organism survival. Previous studies have identified several factors that influence OPC development, including excitatory glutamatergic synapses that form between neurons and OPCs during myelination. However, little is known about how glutamate signaling affects OPC migration before myelination. In this study, we use in vivo, time-lapse imaging in zebrafish in conjunction with genetic and pharmacological perturbation to investigate OPC migration and myelination when the GluR4A ionotropic glutamate receptor subunit is disrupted. In our studies, we observed that gria4a mutant embryos and larvae displayed abnormal OPC migration and altered dorsoventral distribution in the spinal cord. Genetic mosaic analysis confirmed that these effects were cell-autonomous, and we identified that voltage-gated calcium channels were downstream of glutamate receptor signaling in OPCs and could rescue the migration and myelination defects we observed when glutamate signaling was perturbed. These results offer new insights into the complex system of neuron-OPC interactions and reveal a cell-autonomous role for glutamatergic signaling in OPCs during neural development.SIGNIFICANCE STATEMENT The migration of oligodendrocyte progenitor cells (OPCs) is an essential process during development that leads to uniform oligodendrocyte distribution and sufficient myelination for central nervous system function. Here, we demonstrate that the AMPA receptor (AMPAR) subunit GluR4A is an important driver of OPC migration and myelination in vivo and that activated voltage-gated calcium channels are downstream of glutamate receptor signaling in mediating this migration.


Asunto(s)
Ácido Glutámico/metabolismo , Neurogénesis/fisiología , Células Precursoras de Oligodendrocitos/metabolismo , Receptores AMPA/metabolismo , Médula Espinal/embriología , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Transducción de Señal/fisiología , Pez Cebra
10.
J Neurosci ; 41(5): 823-833, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33468571

RESUMEN

Phagocytic activity of glial cells is essential for proper nervous system sculpting, maintenance of circuitry, and long-term brain health. Glial engulfment of apoptotic cells and superfluous connections ensures that neuronal connections are appropriately refined, while clearance of damaged projections and neurotoxic proteins in the mature brain protects against inflammatory insults. Comparative work across species and cell types in recent years highlights the striking conservation of pathways that govern glial engulfment. Many signaling cascades used during developmental pruning are re-employed in the mature brain to "fine tune" synaptic architecture and even clear neuronal debris following traumatic events. Moreover, the neuron-glia signaling events required to trigger and perform phagocytic responses are impressively conserved between invertebrates and vertebrates. This review offers a compare-and-contrast portrayal of recent findings that underscore the value of investigating glial engulfment mechanisms in a wide range of species and contexts.


Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Comunicación Celular/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Fagocitosis/fisiología , Animales , Humanos , Especificidad de la Especie
11.
Glia ; 70(10): 1826-1849, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35616185

RESUMEN

Spinal motor nerves are necessary for organismal locomotion and survival. In zebrafish and most vertebrates, these peripheral nervous system structures are composed of bundles of axons that naturally regenerate following injury. However, the cellular and molecular mechanisms that mediate this process are still only partially understood. Perineurial glia, which form a component of the blood-nerve barrier, are necessary for the earliest regenerative steps by establishing a glial bridge across the injury site as well as phagocytosing debris. Without perineurial glial bridging, regeneration is impaired. In addition to perineurial glia, Schwann cells, the cells that ensheath and myelinate axons within the nerve, are essential for debris clearance and axon guidance. In the absence of Schwann cells, perineurial glia exhibit perturbed bridging, demonstrating that these two cell types communicate during the injury response. While the presence and importance of perineurial glial bridging is known, the molecular mechanisms that underlie this process remain a mystery. Understanding the cellular and molecular interactions that drive perineurial glial bridging is crucial to unlocking the mechanisms underlying successful motor nerve regeneration. Using laser axotomy and in vivo imaging in zebrafish, we show that transforming growth factor-beta (TGFß) signaling modulates perineurial glial bridging. Further, we identify connective tissue growth factor-a (ctgfa) as a downstream effector of TGF-ß signaling that works in a positive feedback loop to mediate perineurial glial bridging. Together, these studies present a new signaling pathway involved in the perineurial glial injury response and further characterize the dynamics of the perineurial glial bridge.


Asunto(s)
Traumatismos de los Nervios Periféricos , Pez Cebra , Animales , Animales Modificados Genéticamente , Axones/fisiología , Regeneración Nerviosa/fisiología , Neuroglía/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Nervios Periféricos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factores de Crecimiento Transformadores/metabolismo
12.
PLoS Genet ; 13(4): e1006712, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28379965

RESUMEN

Somatosensory information from the periphery is routed to the spinal cord through centrally-projecting sensory axons that cross into the central nervous system (CNS) via the dorsal root entry zone (DREZ). The glial cells that ensheath these axons ensure rapid propagation of this information. Despite the importance of this glial-axon arrangement, how this afferent nerve is assembled during development is unknown. Using in vivo, time-lapse imaging we show that as centrally-projecting pioneer axons from dorsal root ganglia (DRG) enter the spinal cord, they initiate expression of the cytokine TNFalpha. This induction coincides with ensheathment of these axons by associated glia via a TNF receptor 2 (TNFR2)-mediated process. This work identifies a signaling cascade that mediates peripheral glial-axon interactions and it functions to ensure that DRG afferent projections are ensheathed after pioneer axons complete their navigation, which promotes efficient somatosensory neural function.


Asunto(s)
Neuroglía/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Raíces Nerviosas Espinales/metabolismo , Factor de Necrosis Tumoral alfa/genética , Animales , Astrocitos/metabolismo , Axones/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Ganglios Espinales , Regulación del Desarrollo de la Expresión Génica , Ratones , Neuroglía/citología , Neuronas Aferentes/metabolismo , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/biosíntesis , Transducción de Señal , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Raíces Nerviosas Espinales/crecimiento & desarrollo , Factor de Necrosis Tumoral alfa/biosíntesis , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
13.
J Neurosci ; 37(18): 4790-4807, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28389474

RESUMEN

Precisely orchestrated interactions between spinal motor axons and their ensheathing glia are vital for forming and maintaining functional spinal motor nerves. Following perturbations to peripheral myelinating glial cells, centrally derived oligodendrocyte progenitor cells (OPCs) ectopically exit the spinal cord and myelinate peripheral nerves in myelin with CNS characteristics. However, whether remaining peripheral ensheathing glia, such as perineurial glia, properly encase the motor nerve despite this change in glial cell and myelin composition, remains unknown. Using zebrafish mutants in which OPCs migrate out of the spinal cord and myelinate peripheral motor axons, we assayed perineurial glial development, maturation, and response to injury. Surprisingly, in the presence of OPCs, perineurial glia exited the CNS normally. However, aspects of their development, response to injury, and function were altered compared with wildtype larvae. In an effort to better understand the plasticity of perineurial glia in response to myelin perturbations, we identified transforming growth factor-ß1 as a partial mediator of perineurial glial development. Together, these results demonstrate the incredible plasticity of perineurial glia in the presence of myelin perturbations.SIGNIFICANCE STATEMENT Peripheral neuropathies can result from damage or dysregulation of the insulating myelin sheath surrounding spinal motor axons, causing pain, inefficient nerve conduction, and the ectopic migration of oligodendrocyte progenitor cells (OPCs), the resident myelinating glial cell of the CNS, into the periphery. How perineurial glia, the ensheathing cells that form the protective blood-nerve barrier, are impacted by this myelin composition change is unknown. Here, we report that certain aspects of perineurial glial development and injury responses are mostly unaffected in the presence of ectopic OPCs. However, perineurial glial function is disrupted along nerves containing centrally derived myelin, demonstrating that, although perineurial glial cells display plasticity despite myelin perturbations, the blood-nerve barrier is compromised in the presence of ectopic OPCs.


Asunto(s)
Barrera Hematoencefálica/embriología , Neuroglía/fisiología , Plasticidad Neuronal/fisiología , Nervios Periféricos/embriología , Nervios Periféricos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Modificados Genéticamente , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/fisiología , Neurogénesis/fisiología , Neuroglía/citología , Nervios Periféricos/citología , Pez Cebra , Proteínas de Pez Cebra
14.
J Neurochem ; 145(1): 6-18, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377124

RESUMEN

Myelin, an insulating membrane that enables rapid action potential propagation, is an essential component of an efficient, functional vertebrate nervous system. Oligodendrocytes, the myelinating glia of the central nervous system (CNS), produce myelin throughout the CNS, which requires continuous proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Because myelination is essential for efficient neurotransmission, researchers hypothesize that neuronal signals may regulate the cascade of events necessary for this process. The ability of oligodendrocytes and oligodendrocyte progenitor cells to detect and respond to neuronal activity is becoming increasingly appreciated, although the specific signals involved are still a matter of debate. Recent evidence from multiple studies points to purinergic signaling as a potential regulator of oligodendrocyte development and differentiation. Adenosine triphosphate (ATP) and its derivatives are potent signaling ligands with receptors expressed on many populations of cells in the nervous system, including cells of the oligodendrocyte lineage. Release of ATP into the extracellular space can initiate a multitude of signaling events, and these downstream signals are specific to the particular purinergic receptor (or receptors) expressed, and whether enzymes are present to hydrolyze ATP to its derivatives adenosine diphosphate and adenosine, each of which can activate their own unique downstream signaling cascades. This review will introduce purinergic signaling in the CNS and discuss evidence for its effects on oligodendrocyte proliferation, differentiation, and myelination. We will review sources of extracellular purines in the nervous system and how changes in purinergic receptor expression may be coupled to oligodendrocyte differentiation. We will also briefly discuss purinergic signaling in injury and diseases of the CNS.


Asunto(s)
Oligodendroglía/citología , Oligodendroglía/fisiología , Receptores Purinérgicos/metabolismo , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología
15.
Dev Dyn ; 246(11): 956-962, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28598521

RESUMEN

BACKGROUND: Spinal motor nerves are essential for relaying information between the central and peripheral nervous systems. Perturbations to cell types that comprise these nerves may impair rapid and efficient transmission of action potentials and alter nerve function. Identifying ultrastructural changes resulting from defects to these cellular components via transmission electron microscopy (TEM) can provide valuable insight into nerve function and disease. However, efficiently locating spinal motor nerves in adult zebrafish for TEM is challenging and time-consuming. Because of this, we developed a protocol that allows us to quickly and precisely locate spinal motor nerve roots in adult zebrafish for TEM processing. RESULTS: Following fixation, a transverse slab of adult zebrafish dissected from the trunk region was mounted in embedding media, sectioned, and secondary fixation with osmium tetroxide performed. Transverse sections containing motor nerves were selected for TEM ultrathin sectioning and imaging. CONCLUSIONS: We developed an efficient protocol for locating spinal motor nerves in adult zebrafish to allow for ultrastructural characterization. Although our work focuses on spinal motor nerves, this protocol may be useful for efficiently identifying other discrete, repeated structures within the developing and mature nervous system that are difficult to find via traditional, whole organism TEM processing. Developmental Dynamics 246:956-962, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Microscopía Electrónica de Transmisión/métodos , Raíces Nerviosas Espinales/ultraestructura , Animales , Técnicas Histológicas/métodos , Pez Cebra/anatomía & histología
16.
PLoS Biol ; 12(9): e1001961, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25268888

RESUMEN

Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition.


Asunto(s)
Neuronas Motoras/citología , Oligodendroglía/citología , Médula Espinal/citología , Células Madre/citología , Pez Cebra/crecimiento & desarrollo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Axones/ultraestructura , Diferenciación Celular , Linaje de la Célula/genética , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Neuronas Motoras/metabolismo , Vaina de Mielina/ultraestructura , Oligodendroglía/metabolismo , Especificidad de Órganos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Células Madre/metabolismo , Imagen de Lapso de Tiempo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Glia ; 64(7): 1138-53, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27029762

RESUMEN

In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. GLIA 2016. GLIA 2016;64:1138-1153.


Asunto(s)
Movimiento Celular/fisiología , Sistema Nervioso/citología , Neuroglía/fisiología , Médula Espinal/citología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Neuroglía/ultraestructura , Médula Espinal/embriología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
18.
Glia ; 64(7): 1170-89, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27100776

RESUMEN

Radial glial cells are presumptive neural stem cells (NSCs) in the developing nervous system. The direct requirement of radial glia for the generation of a diverse array of neuronal and glial subtypes, however, has not been tested. We employed two novel transgenic zebrafish lines and endogenous markers of NSCs and radial glia to show for the first time that radial glia are essential for neurogenesis during development. By using the gfap promoter to drive expression of nuclear localized mCherry we discerned two distinct radial glial-derived cell types: a major nestin+/Sox2+ subtype with strong gfap promoter activity and a minor Sox2+ subtype lacking this activity. Fate mapping studies in this line indicate that gfap+ radial glia generate later-born CoSA interneurons, secondary motorneurons, and oligodendroglia. In another transgenic line using the gfap promoter-driven expression of the nitroreductase enzyme, we induced cell autonomous ablation of gfap+ radial glia and observed a reduction in their specific derived lineages, but not Blbp+ and Sox2+/gfap-negative NSCs, which were retained and expanded at later larval stages. Moreover, we provide evidence supporting classical roles of radial glial in axon patterning, blood-brain barrier formation, and locomotion. Our results suggest that gfap+ radial glia represent the major NSC during late neurogenesis for specific lineages, and possess diverse roles to sustain the structure and function of the spinal cord. These new tools will both corroborate the predicted roles of astroglia and reveal novel roles related to development, physiology, and regeneration in the vertebrate nervous system. GLIA 2016;64:1170-1189.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Médula Espinal/citología , Factores de Edad , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Diferenciación Celular , Proliferación Celular/genética , Embrión no Mamífero , Desarrollo Embrionario/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Locomoción/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Médula Espinal/embriología , Factores de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína Fluorescente Roja
19.
J Neurosci ; 34(38): 12762-77, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25232113

RESUMEN

Development and maintenance of the peripheral nervous system (PNS) are essential for an organism to survive and reproduce, and damage to the PNS by disease or injury is often debilitating. Remarkably, the nerves of the PNS are capable of regenerating after trauma. However, full functional recovery after nerve injuries remains poor. Peripheral nerve regeneration has been studied extensively, with particular emphasis on elucidating the roles of Schwann cells and macrophages during degeneration and subsequent regeneration. In contrast, the roles of other essential nerve components, including perineurial glia, are poorly understood. Here, we use laser nerve transection and in vivo, time-lapse imaging in zebrafish to investigate the role and requirement of perineurial glia after nerve injury. We show that perineurial glia respond rapidly and dynamically to nerve transections by extending processes into injury sites and phagocytizing debris. Perineurial glia also bridge injury gaps before Schwann cells and axons, and we demonstrate that these bridges are essential for axon regrowth. Additionally, we show that perineurial glia and macrophages spatially coordinate early debris clearance and that perineurial glia require Schwann cells for their attraction to injury sites. This work highlights the complex nature of cell-cell interactions after injury and introduces perineurial glia as integral players in the regenerative process.


Asunto(s)
Axones/fisiología , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Neuroglía/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Nervios Espinales/fisiopatología , Animales , Animales Modificados Genéticamente , Axones/ultraestructura , Macrófagos/fisiología , Neuronas Motoras/ultraestructura , Degeneración Nerviosa/fisiopatología , Neuroglía/ultraestructura , Fagocitosis/fisiología , Células de Schwann/fisiología , Nervios Espinales/lesiones , Pez Cebra
20.
Dev Dyn ; 243(9): 1116-29, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24979729

RESUMEN

BACKGROUND: All vertebrate peripheral nerves connect the central nervous system (CNS) with targets in the periphery and are composed of axons, layers of ensheathing glia and connective tissue. Although the structure of these conduits is well established, very little is known about the origin and developmental roles of some of their elements. One understudied component, the perineurium, ensheaths nerve fascicles and is a component of the blood-nerve-barrier. In zebrafish, the motor nerve perineurium is composed of CNS-derived nkx2.2a(+) perineurial glia, which establish the motor exit point (MEP) during development. To determine if mouse perineurial cells also originate within the CNS and perform a similar function, we created a Nkx2.2:EGFP transgenic reporter line. RESULTS: In conjunction with RNA expression analysis and antibody labeling, we observed Nkx2.2(+) cells along peripheral motor nerves at all stages of development and in adult tissue. Additionally, in mice lacking Nkx2.2, we demonstrate that Nkx2.2(+) perineurial glia are essential for motor nerve development and Schwann cell differentiation. CONCLUSIONS: Our studies reveal that a subset of mouse perineurial cells are CNS-derived, express Nkx2.2, and are essential for motor nerve development. This work highlights an under-appreciated but essential contribution of CNS-derived cells to the development of the mammalian peripheral nervous system (PNS).


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/citología , Neuroglía/citología , Nervios Periféricos/citología , Células de Schwann/citología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Axones/fisiología , Línea Celular , Proteína Homeobox Nkx-2.2 , Ratones , Neuronas Motoras/metabolismo , Neuroglía/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA