Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743818

RESUMEN

Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms, and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.

2.
Brain ; 146(6): 2214-2226, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36408731

RESUMEN

Modulation of cognitive functions supporting human declarative memory is one of the grand challenges of neuroscience, and of vast importance for a variety of neuropsychiatric, neurodegenerative and neurodevelopmental diseases. Despite a recent surge of successful attempts at improving performance in a range of memory tasks, the optimal approaches and parameters for memory enhancement have yet to be determined. On a more fundamental level, it remains elusive as to how delivering electrical current in a given brain area leads to enhanced memory processing. Starting from the local and distal physiological effects on neural populations, the mechanisms of enhanced memory encoding, maintenance, consolidation or recall in response to direct electrical stimulation are only now being unravelled. With the advent of innovative neurotechnologies for concurrent recording and stimulation intracranially in the human brain, it becomes possible to study both acute and chronic effects of stimulation on memory performance and the underlying neural activities. In this review, we summarize the effects of various invasive stimulation approaches for modulating memory functions. We first outline the challenges that were faced in the initial studies of memory enhancement and the lessons learnt. Electrophysiological biomarkers are then reviewed as more objective measures of the stimulation effects than behavioural outcomes. Finally, we classify the various stimulation approaches into continuous and phasic modulation with an open or closed loop for responsive stimulation based on analysis of the recorded neural activities. Although the potential advantage of closed-loop responsive stimulation over the classic open-loop approaches is inconclusive, we foresee the emerging results from ongoing longitudinal studies and clinical trials will shed light on both the mechanisms and optimal strategies for improving declarative memory. Adaptive stimulation based on the biomarker analysis over extended periods of time is proposed as a future direction for obtaining lasting effects on memory functions. Chronic tracking and modulation of neural activities intracranially through adaptive stimulation opens tantalizing new avenues to continually monitor and treat memory and cognitive deficits in a range of brain disorders. Brain co-processors created with machine-learning tools and wireless bi-directional connectivity to seamlessly integrate implanted devices with smartphones and cloud computing are poised to enable real-time automated analysis of large data volumes and adaptively tune electrical stimulation based on electrophysiological biomarkers of behavioural states. Next-generation implantable devices for high-density recording and stimulation of electrophysiological activities, and technologies for distributed brain-computer interfaces are presented as selected future perspectives for modulating human memory and associated mental processes.


Asunto(s)
Encéfalo , Memoria , Humanos , Encéfalo/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Estimulación Eléctrica , Cognición
3.
Stroke ; 53(11): 3474-3480, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36073367

RESUMEN

BACKGROUND: Despite advances in understanding various risk and prognostic factors, spontaneous intracerebral hemorrhage is connected to very high morbidity and mortality, while the therapy is mainly supportive. Understanding of the pathophysiology of initial hematoma expansion is limited due to insufficient clinical data and lack of a suitable animal model. METHODS: We injected 40 anatomic specimens of the basal ganglia with contrast medium, scanned them with a micro-computed tomography scanner and analyzed the results of radiological studies, direct and histological examinations. RESULTS: In 9 cases, micro-computed tomography and histological examinations revealed contrast medium extravasations mimicking intracerebral hematomas. The artificial hematomas spread both proximally and distally along the ruptured perforator and its branches in the perivascular spaces and detached the branches from the adjacent neural tissue leading to destruction of the tissue and secondary extravasations. Moreover, some contrast extravasations skipped to the perivascular spaces of unruptured perforators, created further extravasation sites and aggravated the expansion of the artificial hematoma. There was no subarachnoid extension of any artificial hematoma. CONCLUSIONS: We postulate that a forming basal ganglia intracerebral hematoma spreads initially in the perivascular space, detaches the branches from the neural tissue and causes secondary bleeding. It can also skip to the perivascular space of a nearby perforator. The proposed mechanism of hematoma initiation and formation explains extent of damage to the neural tissue, variability of growth in time and space, creation of secondary bleeding sites, and limited usefulness of surgical interventions. The model is reproducible, the extent of the artificial hematoma can be easily controlled, the rupture sites of the perforating arteries can be determined, and preparation of the model does not require specialized, expensive equipment apart from the micro-computed tomography scanner.


Asunto(s)
Hemorragia Cerebral , Hematoma , Animales , Microtomografía por Rayos X , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/etiología , Hematoma/complicaciones , Medios de Contraste , Ganglios Basales/diagnóstico por imagen
4.
Neuroimage ; 245: 118637, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34644594

RESUMEN

A wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial electroencephalography (iEEG) to parse the spatiotemporal dynamics of spectral activities induced during formation of verbal memories. Encoding of words for subsequent free recall activated low frequency theta, intermediate frequency alpha and beta, and high frequency gamma power in a mosaic pattern of discrete cortical sites. A majority of the cortical sites recorded activity in only one of these frequencies, except for the visual cortex where spectral power was induced across multiple bands. Each frequency band showed characteristic dynamics of the induced power specific to cortical area and hemisphere. The power of the low, intermediate, and high frequency activities propagated in independent sequences across the visual, temporal and prefrontal cortical areas throughout subsequent phases of memory encoding. Our results provide a holistic, simplified model of the spectral activities engaged in the formation of human memory, suggesting an anatomically and temporally distributed mosaic of coordinated brain rhythms.


Asunto(s)
Electroencefalografía/métodos , Memoria/fisiología , Adulto , Conjuntos de Datos como Asunto , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía Computarizada por Rayos X
5.
Epilepsia ; 62(11): 2627-2639, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536230

RESUMEN

OBJECTIVE: Verbal memory dysfunction is common in focal, drug-resistant epilepsy (DRE). Unfortunately, surgical removal of seizure-generating brain tissue can be associated with further memory decline. Therefore, localization of both the circuits generating seizures and those underlying cognitive functions is critical in presurgical evaluations for patients who may be candidates for resective surgery. We used intracranial electroencephalographic (iEEG) recordings during a verbal memory task to investigate word encoding in focal epilepsy. We hypothesized that engagement in a memory task would exaggerate local iEEG feature differences between the seizure onset zone (SOZ) and neighboring tissue as compared to wakeful rest ("nontask"). METHODS: Ten participants undergoing presurgical iEEG evaluation for DRE performed a free recall verbal memory task. We evaluated three iEEG features in SOZ and non-SOZ electrodes during successful word encoding and compared them with nontask recordings: interictal epileptiform spike (IES) rates, power in band (PIB), and relative entropy (REN; a functional connectivity measure). RESULTS: We found a complex pattern of PIB and REN changes in SOZ and non-SOZ electrodes during successful word encoding compared to nontask. Successful word encoding was associated with a reduction in local electrographic functional connectivity (increased REN), which was most exaggerated in temporal lobe SOZ. The IES rates were reduced during task, but only in the non-SOZ electrodes. Compared with nontask, REN features during task yielded marginal improvements in SOZ classification. SIGNIFICANCE: Previous studies have supported REN as a biomarker for epileptic brain. We show that REN differences between SOZ and non-SOZ are enhanced during a verbal memory task. We also show that IESs are reduced during task in non-SOZ, but not in SOZ. These findings support the hypothesis that SOZ and non-SOZ respond differently to task and warrant further exploration into the use of cognitive tasks to identify functioning memory circuits and localize SOZ.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Encéfalo , Epilepsia Refractaria/cirugía , Electrocorticografía , Electroencefalografía , Epilepsias Parciales/cirugía , Humanos , Convulsiones
6.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34833681

RESUMEN

The emergence of innovative neurotechnologies in global brain projects has accelerated research and clinical applications of BCIs beyond sensory and motor functions. Both invasive and noninvasive sensors are developed to interface with cognitive functions engaged in thinking, communication, or remembering. The detection of eye movements by a camera offers a particularly attractive external sensor for computer interfaces to monitor, assess, and control these higher brain functions without acquiring signals from the brain. Features of gaze position and pupil dilation can be effectively used to track our attention in healthy mental processes, to enable interaction in disorders of consciousness, or to even predict memory performance in various brain diseases. In this perspective article, we propose the term 'CyberEye' to encompass emerging cognitive applications of eye-tracking interfaces for neuroscience research, clinical practice, and the biomedical industry. As CyberEye technologies continue to develop, we expect BCIs to become less dependent on brain activities, to be less invasive, and to thus be more applicable.


Asunto(s)
Interfaces Cerebro-Computador , Tecnología de Seguimiento Ocular , Encéfalo , Cognición , Movimientos Oculares
7.
Brain ; 141(4): 971-978, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324988

RESUMEN

Direct electrical stimulation of the human brain can elicit sensory and motor perceptions as well as recall of memories. Stimulating higher order association areas of the lateral temporal cortex in particular was reported to activate visual and auditory memory representations of past experiences (Penfield and Perot, 1963). We hypothesized that this effect could be used to modulate memory processing. Recent attempts at memory enhancement in the human brain have been focused on the hippocampus and other mesial temporal lobe structures, with a few reports of memory improvement in small studies of individual brain regions. Here, we investigated the effect of stimulation in four brain regions known to support declarative memory: hippocampus, parahippocampal neocortex, prefrontal cortex and temporal cortex. Intracranial electrode recordings with stimulation were used to assess verbal memory performance in a group of 22 patients (nine males). We show enhanced performance with electrical stimulation in the lateral temporal cortex (paired t-test, P = 0.0067), but not in the other brain regions tested. This selective enhancement was observed both on the group level, and for two of the four individual subjects stimulated in the temporal cortex. This study shows that electrical stimulation in specific brain areas can enhance verbal memory performance in humans.awx373media15704855796001.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastornos de la Memoria/terapia , Lóbulo Temporal/fisiología , Aprendizaje Verbal/fisiología , Adulto , Mapeo Encefálico , Epilepsia/complicaciones , Femenino , Humanos , Masculino , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
8.
Brain ; 140(5): 1337-1350, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28335018

RESUMEN

Gamma frequency activity (30-150 Hz) is induced in cognitive tasks and is thought to reflect underlying neural processes. Gamma frequency activity can be recorded directly from the human brain using intracranial electrodes implanted in patients undergoing treatment for drug-resistant epilepsy. Previous studies have independently explored narrowband oscillations in the local field potential and broadband power increases. It is not clear, however, which processes contribute to human brain gamma frequency activity, or their dynamics and roles during memory processing. Here a large dataset of intracranial recordings obtained during encoding of words from 101 patients was used to detect, characterize and compare induced gamma frequency activity events. Individual bursts of gamma frequency activity were isolated in the time-frequency domain to determine their spectral features, including peak frequency, amplitude, frequency span, and duration. We found two distinct types of gamma frequency activity events that showed either narrowband or broadband frequency spans revealing characteristic spectral properties. Narrowband events, the predominant type, were induced by word presentations following an initial induction of broadband events, which were temporally separated and selectively correlated with evoked response potentials, suggesting that they reflect different neural activities and play different roles during memory encoding. The two gamma frequency activity types were differentially modulated during encoding of subsequently recalled and forgotten words. In conclusion, we found evidence for two distinct activity types induced in the gamma frequency range during cognitive processing. Separating these two gamma frequency activity components contributes to the current understanding of electrophysiological biomarkers, and may prove useful for emerging neurotechnologies targeting, mapping and modulating distinct neurophysiological processes in normal and epileptogenic brain.


Asunto(s)
Ritmo Gamma/fisiología , Memoria/fisiología , Encéfalo/fisiología , Epilepsia Refractaria/fisiopatología , Electrodos Implantados , Potenciales Evocados Visuales/fisiología , Humanos
9.
Epilepsy Behav ; 88: 33-40, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30216929

RESUMEN

BACKGROUND: We sought to determine if ripple oscillations (80-120 Hz), detected in intracranial electroencephalogram (iEEG) recordings of patients with epilepsy, correlate with an enhancement or disruption of verbal episodic memory encoding. METHODS: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch and included the seizure onset zone (SOZ) as a covariate in the LRMs. RESULTS: We detected events during 58,312 word presentation trials from 7630 unique electrode sites. The probability of ripple on spike (RonS) events was increased in the SOZ (p < 0.04). In the left temporal neocortex, RonS events during word presentation corresponded with a decrease in the odds ratio (OR) of successful recall, however, this effect only met significance in the SOZ (OR of word recall: 0.71, 95% confidence interval (CI): 0.59-0.85, n = 158 events, adaptive Hochberg, p < 0.01). Ripple on oscillation (RonO) events that occurred in the left temporal neocortex non-SOZ also correlated with decreased odds of successful recall (OR: 0.52, 95% CI: 0.34-0.80, n = 140, adaptive Hochberg, p < 0.01). Spikes and RonS that occurred during word presentation in the left middle temporal gyrus (MTG) correlated with the most significant decrease in the odds of successful recall, irrespective of the location of the SOZ (adaptive Hochberg, p < 0.01). CONCLUSION: Ripples and spikes generated in the left temporal neocortex are associated with impaired verbal episodic memory encoding. Although physiological and pathological ripple oscillations were not distinguished during cognitive tasks, our results show an association of undifferentiated ripples with impaired encoding. The effect was sometimes specific to regions outside the SOZ, suggesting that widespread effects of epilepsy outside the SOZ may contribute to cognitive impairment.


Asunto(s)
Epilepsias Parciales/fisiopatología , Memoria Episódica , Neocórtex/fisiología , Convulsiones/fisiopatología , Lóbulo Temporal/fisiología , Aprendizaje Verbal/fisiología , Adulto , Mapeo Encefálico/métodos , Cognición/fisiología , Electrocorticografía , Femenino , Humanos , Modelos Logísticos , Masculino , Recuerdo Mental/fisiología , Persona de Mediana Edad , Oportunidad Relativa
10.
Epilepsia ; 58(1): 94-104, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27859029

RESUMEN

OBJECTIVE: Local field potentials (LFPs) arise from synchronous activation of millions of neurons, producing seemingly consistent waveform shapes and relative synchrony across electrodes. Interictal spikes (IISs) are LFPs associated with epilepsy that are commonly used to guide surgical resection. Recently, changes in neuronal firing patterns observed in the minutes preceding seizure onset were found to be reactivated during postseizure sleep, a process called seizure-related consolidation (SRC), due to similarities with learning-related consolidation. Because IISs arise from summed neural activity, we hypothesized that changes in IIS shape and relative synchrony would be observed in the minutes preceding seizure onset and would be reactivated preferentially during postseizure slow-wave sleep (SWS). METHODS: Scalp and intracranial recordings were obtained continuously across multiple days from clinical macroelectrodes implanted in patients undergoing treatment for intractable epilepsy. Data from scalp electrodes were used to stage sleep. Data from intracranial electrodes were used to detect IISs using a previously established algorithm. Partial correlations were computed for sleep and wake periods before and after seizures as a function of correlations observed in the minutes preceding seizures. Magnetic resonance imaging (MRI) and computed tomography (CT) scans were co-registered with electroencephalography (EEG) to determine the location of the seizure-onset zone (SOZ). RESULTS: Changes in IIS shape and relative synchrony were observed on a subset of macroelectrodes minutes before seizure onset, and these changes were reactivated preferentially during postseizure SWS. Changes in synchrony were greatest for pairs of electrodes where at least one electrode was located in the SOZ. SIGNIFICANCE: These data suggest preseizure changes in neural activity and their subsequent reactivation occur across a broad spatiotemporal scale: from single neurons to LFPs, both within and outside the SOZ. The preferential reactivation of seizure-related changes in IISs during postseizure SWS adds to a growing body of literature suggesting that pathologic neural processes may utilize physiologic mechanisms of synaptic plasticity.


Asunto(s)
Encéfalo/fisiopatología , Sincronización de Fase en Electroencefalografía/fisiología , Epilepsia/complicaciones , Trastornos del Sueño-Vigilia/etiología , Encéfalo/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Fases del Sueño/fisiología , Trastornos del Sueño-Vigilia/diagnóstico por imagen , Tomógrafos Computarizados por Rayos X
11.
J Neurosci ; 35(3): 999-1010, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609617

RESUMEN

The establishment of memories involves reactivation of waking neuronal activity patterns and strengthening of associated neural circuits during slow-wave sleep (SWS), a process known as "cellular consolidation" (Dudai and Morris, 2013). Reactivation of neural activity patterns during waking behaviors that occurs on a timescale of seconds to minutes is thought to constitute memory recall (O'Keefe and Nadel, 1978), whereas consolidation of memory traces may be revealed and served by correlated firing (reactivation) that appears during sleep under conditions suitable for synaptic modification (Buhry et al., 2011). Although reactivation has been observed in human neuronal recordings (Gelbard-Sagiv et al., 2008; Miller et al., 2013), reactivation during sleep has not, likely because data are difficult to obtain and the effect is subtle. Seizures, however, provide intense and synchronous, yet sparse activation (Bower et al., 2012) that could produce a stronger consolidation effect if seizures activate learning-related mechanisms similar to those activated by learned tasks. Continuous wide-bandwidth recordings from patients undergoing intracranial monitoring for drug-resistant epilepsy revealed reactivation of seizure-related neuronal activity during subsequent SWS, but not wakefulness. Those neuronal assemblies that were most strongly activated during seizures showed the largest correlation changes, suggesting that consolidation selectively strengthened neuronal circuits activated by seizures. These results suggest that seizures "hijack" physiological learning mechanisms and also suggest a novel epilepsy therapy targeting neuronal dynamics during post-seizure sleep.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Memoria/fisiología , Red Nerviosa/fisiopatología , Neuronas/fisiología , Convulsiones/fisiopatología , Sueño/fisiología , Potenciales de Acción/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Curr Opin Neurol ; 29(2): 175-81, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26953850

RESUMEN

PURPOSE OF REVIEW: Localization of focal epileptic brain is critical for successful epilepsy surgery and focal brain stimulation. Despite significant progress, roughly half of all patients undergoing focal surgical resection, and most patients receiving focal electrical stimulation, are not seizure free. There is intense interest in high-frequency oscillations (HFOs) recorded with intracranial electroencephalography as potential biomarkers to improve epileptogenic brain localization, resective surgery, and focal electrical stimulation. The present review examines the evidence that HFOs are clinically useful biomarkers. RECENT FINDINGS: Performing the PubMed search 'High-Frequency Oscillations and Epilepsy' for 2013-2015 identifies 308 articles exploring HFO characteristics, physiological significance, and potential clinical applications. SUMMARY: There is strong evidence that HFOs are spatially associated with epileptic brain. There remain, however, significant challenges for clinical translation of HFOs as epileptogenic brain biomarkers: Differentiating true HFO from the high-frequency power changes associated with increased neuronal firing and bandpass filtering sharp transients. Distinguishing pathological HFO from normal physiological HFO. Classifying tissue under individual electrodes as normal or pathological. Sharing data and algorithms so research results can be reproduced across laboratories. Multicenter prospective trials to provide definitive evidence of clinical utility.


Asunto(s)
Biomarcadores/análisis , Mapeo Encefálico , Encéfalo/fisiopatología , Estimulación Eléctrica , Epilepsias Parciales/fisiopatología , Estimulación Eléctrica/métodos , Electroencefalografía/métodos , Epilepsias Parciales/diagnóstico , Humanos
13.
Brain ; 137(Pt 8): 2231-44, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24919972

RESUMEN

High frequency oscillations are associated with normal brain function, but also increasingly recognized as potential biomarkers of the epileptogenic brain. Their role in human cognition has been predominantly studied in classical gamma frequencies (30-100 Hz), which reflect neuronal network coordination involved in attention, learning and memory. Invasive brain recordings in animals and humans demonstrate that physiological oscillations extend beyond the gamma frequency range, but their function in human cognitive processing has not been fully elucidated. Here we investigate high frequency oscillations spanning the high gamma (50-125 Hz), ripple (125-250 Hz) and fast ripple (250-500 Hz) frequency bands using intracranial recordings from 12 patients (five males and seven females, age 21-63 years) during memory encoding and recall of a series of affectively charged images. Presentation of the images induced high frequency oscillations in all three studied bands within the primary visual, limbic and higher order cortical regions in a sequence consistent with the visual processing stream. These induced oscillations were detected on individual electrodes localized in the amygdala, hippocampus and specific neocortical areas, revealing discrete oscillations of characteristic frequency, duration and latency from image presentation. Memory encoding and recall significantly modulated the number of induced high gamma, ripple and fast ripple detections in the studied structures, which was greater in the primary sensory areas during the encoding (Wilcoxon rank sum test, P = 0.002) and in the higher-order cortical association areas during the recall (Wilcoxon rank sum test, P = 0.001) of memorized images. Furthermore, the induced high gamma, ripple and fast ripple responses discriminated the encoded and the affectively charged images. In summary, our results show that high frequency oscillations, spanning a wide range of frequencies, are associated with memory processing and generated along distributed cortical and limbic brain regions. These findings support an important role for fast network synchronization in human cognition and extend our understanding of normal physiological brain activity during memory processing.


Asunto(s)
Ondas Encefálicas/fisiología , Cerebro/fisiología , Electroencefalografía/métodos , Memoria/fisiología , Red Nerviosa/fisiología , Adulto , Afecto/fisiología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/cirugía , Corteza Cerebral/fisiología , Electrodos Implantados , Electroencefalografía/instrumentación , Femenino , Neuroimagen Funcional , Hipocampo/fisiología , Hipocampo/cirugía , Humanos , Masculino , Recuerdo Mental/fisiología , Persona de Mediana Edad , Reconocimiento en Psicología/fisiología , Corteza Somatosensorial/fisiología , Percepción Visual/fisiología , Adulto Joven
14.
Brain ; 136(Pt 8): 2444-56, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23803305

RESUMEN

Eleven patients being evaluated with intracranial electroencephalography for medically resistant temporal lobe epilepsy participated in a visual recognition memory task. Interictal epileptiform spikes were manually marked and their rate of occurrence compared between baseline and three 2 s periods spanning a 6 s viewing period. During successful, but not unsuccessful, encoding of the images there was a significant reduction in interictal epileptiform spike rate in the amygdala, hippocampus, and temporal cortex. During the earliest encoding period (0-2000 ms after image presentation) in these trials there was a widespread decrease in the power of theta, alpha and beta band local field potential oscillations that coincided with emergent focal gamma frequency activity. Interictal epileptiform spike rate correlated with spectral band power changes and broadband (4-150 Hz) desynchronization, which predicted significant reduction in interictal epileptiform spike rate. Spike-triggered averaging of the field potential power spectrum detected a burst of low frequency synchronization 200 ms before the interictal epileptiform spikes that arose during this period of encoding. We conclude that interictal epileptiform spikes are modulated by the patterns of network oscillatory activity that accompany human memory offering a new mechanistic insight into the interplay of cognitive processing, local field potential dynamics and interictal epileptiform spike generation.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/fisiopatología , Memoria/fisiología , Red Nerviosa/fisiopatología , Lóbulo Temporal/fisiopatología , Adulto , Mapeo Encefálico , Electroencefalografía , Humanos , Pruebas Neuropsicológicas , Reconocimiento en Psicología/fisiología
15.
Sci Rep ; 14(1): 3339, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336884

RESUMEN

This paper demonstrates the application of the Johnson-Holmquist II (JH-2) model with correlated and validated parameters to simulate the behavior of a sandstone. The JH-2 model is used to simulate various tests, including single-element tests, structural quasi-static uniaxial and triaxial compression tests, and the split Hopkinson pressure bar test. Additionally, the model is used to simulate drop-weight impact test using a ball bearing and two loading scenarios involving small-scale blasting and projectile impacts. Quantitative and qualitative comparisons demonstrate that the JH-2 model agrees well with both experimental and analytical results. Limitations of the model are also highlighted, particularly for quasi-static problems, as the model was originally developed for high-strain-rate simulations. Ultimately, this study demonstrates that the JH-2 rock constitutive model can obtain reasonable results for a material other than the material for which the model was originally correlated and validated. This paper provides valuable guidance for modeling and simulating sandstone and other rock materials subjected to dynamic loadings.

16.
medRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405801

RESUMEN

High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.

17.
J Neurophysiol ; 110(8): 1958-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23926038

RESUMEN

High-frequency oscillations (HFO; gamma: 40-100 Hz, ripples: 100-200 Hz, and fast ripples: 250-500 Hz) have been widely studied in health and disease. These phenomena may serve as biomarkers for epileptic brain; however, a means of differentiating between pathological and normal physiological HFO is essential. We categorized task-induced physiological HFO during periods of HFO induced by a visual or motor task by measuring frequency, duration, and spectral amplitude of each event in single trial time-frequency spectra and compared them to pathological HFO similarly measured. Pathological HFO had higher mean spectral amplitude, longer mean duration, and lower mean frequency than physiological-induced HFO. In individual patients, support vector machine analysis correctly classified pathological HFO with sensitivities ranging from 70-98% and specificities >90% in all but one patient. In this patient, infrequent high-amplitude HFO were observed in the motor cortex just before movement onset in the motor task. This finding raises the possibility that in epileptic brain physiological-induced gamma can assume higher spectral amplitudes similar to those seen in pathologic HFO. This method if automated and validated could provide a step towards differentiating physiological HFO from pathological HFO and improving localization of epileptogenic brain.


Asunto(s)
Ondas Encefálicas , Epilepsias Parciales/fisiopatología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Desempeño Psicomotor
18.
Life (Basel) ; 13(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37109485

RESUMEN

Eidetic memory has been reported in children and in patients with synesthesia but is otherwise thought to be a rare phenomenon. Presented herein is a patient with right-sided language dominance, as proven via multiple functional imaging and neuropsychometric methods, who has a seizure onset zone in the right temporo-parietal-occipital cortex. This patient's medically refractory epilepsy and thus hyperactive cortex could possibly contribute to near eidetic ability with paired-associates learning tasks (in both short-term and long-term retention). There are reports of epilepsy negatively affecting memory, but as far as the authors are aware to date, there is limited evidence of any lesion enhancing cognitive functions (whether through direct lesion or via compensatory mechanism) that would be localized to a seizure onset zone in the dominant temporo-parietal-occipital junction.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37622393

RESUMEN

The basilar bifurcation region is a common site for intracranial aneurysms, as well as it gives rise to a group of perforating arteries that supply the mesencephalon and the thalamus. Complex vascular microanatomy poses a diagnostic and therapeutic challenge for neurosurgeons, neuroradiologists and neurologists. In this paper, we present a previously unreported case of basilar tip fenestration that gave rise to five perforating arteries: the artery of Percheron and four mesencephalic arteries. Due to invaluable clinical significance, the possibility of such a variant must be considered during performing various neurovascular procedures, since e.g., embolization of the fenestration misdiagnosed as an aneurysm would inevitably lead to severe neurological complications (consciousness disturbances, quadriplegia, and sensory loss). Comprehensive knowledge of the neuroanatomy and neuroembryology is crucial to safe execution of intracranial interventions.

20.
Curr Biol ; 33(7): 1220-1236.e4, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898372

RESUMEN

Short-term memory enables incorporation of recent experience into subsequent decision-making. This processing recruits both the prefrontal cortex and hippocampus, where neurons encode task cues, rules, and outcomes. However, precisely which information is carried when, and by which neurons, remains unclear. Using population decoding of activity in rat medial prefrontal cortex (mPFC) and dorsal hippocampal CA1, we confirm that mPFC populations lead in maintaining sample information across delays of an operant non-match to sample task, despite individual neurons firing only transiently. During sample encoding, distinct mPFC subpopulations joined distributed CA1-mPFC cell assemblies hallmarked by 4-5 Hz rhythmic modulation; CA1-mPFC assemblies re-emerged during choice episodes but were not 4-5 Hz modulated. Delay-dependent errors arose when attenuated rhythmic assembly activity heralded collapse of sustained mPFC encoding. Our results map component processes of memory-guided decisions onto heterogeneous CA1-mPFC subpopulations and the dynamics of physiologically distinct, distributed cell assemblies.


Asunto(s)
Hipocampo , Recuerdo Mental , Ratas , Animales , Hipocampo/fisiología , Memoria a Corto Plazo , Corteza Prefrontal/fisiología , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA