Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2115616120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494421

RESUMEN

Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.


Asunto(s)
Conservación de la Sangre , Procedimientos Analíticos en Microchip , Transfusión Sanguínea/instrumentación , Transfusión Sanguínea/métodos , Humanos , Conservación de la Sangre/métodos , Dispositivos Laboratorio en un Chip , Eritrocitos , Aprendizaje Automático
2.
Br J Haematol ; 201(3): 552-563, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604837

RESUMEN

Endothelial activation and sickle red blood cell (RBC) adhesion are central to the pathogenesis of sickle cell disease (SCD). Quantitatively, RBC-derived extracellular vesicles (REVs) are more abundant from SS RBCs compared with healthy RBCs (AA RBCs). Sickle RBC-derived REVs (SS REVs) are known to promote endothelial cell (EC) activation through cell signalling and transcriptional regulation at longer terms. However, the SS REV-mediated short-term non-transcriptional response of EC is unclear. Here, we examined the impact of SS REVs on acute microvascular EC activation and RBC adhesion at 2 h. Compared with AA REVs, SS REVs promoted human pulmonary microvascular ECs (HPMEC) activation indicated by increased von Willebrand factor (VWF) expression. Under microfluidic conditions, we found abnormal SS RBC adhesion to HPMECs exposed to SS REVs. This enhanced SS RBC adhesion was reduced by haeme binding protein haemopexin or VWF cleaving protease ADAMTS13 to a level similar to HPMECs treated with AA REVs. Consistent with these observations, haemin- or SS REV-induced microvascular stasis in SS mice with implanted dorsal skin-fold chambers that was inhibited by ADAMTS13. The adhesion induced by SS REVs was variable and was higher with SS RBCs from patients with increased markers of haemolysis (lactate dehydrogenase and reticulocyte count) or a concomitant clinical diagnosis of deep vein thrombosis. Our results emphasise the critical contribution made by REVs to the pathophysiology of SCD by triggering acute microvascular EC activation and abnormal RBC adhesion. These findings may help to better understand acute pathophysiological mechanism of SCD and thereby the development of new treatment strategies using VWF as a potential target.


Asunto(s)
Anemia de Células Falciformes , Células Endoteliales , Humanos , Animales , Ratones , Células Endoteliales/patología , Factor de von Willebrand/metabolismo , Adhesión Celular , Eritrocitos/metabolismo
3.
Br J Haematol ; 198(5): 893-902, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35822297

RESUMEN

Individuals with sickle cell disease (SCD) have persistently elevated thrombin generation that results in a state of systemic hypercoagulability. Antithrombin-III (ATIII), an endogenous serine protease inhibitor, inhibits several enzymes in the coagulation cascade, including thrombin. Here, we utilize a biomimetic microfluidic device to model the morphology and adhesive properties of endothelial cells (ECs) activated by thrombin and examine the efficacy of ATIII in mitigating the adhesion of SCD patient-derived red blood cells (RBCs) and EC retraction. Microfluidic devices were fabricated, seeded with ECs, and incubated under physiological shear stress. Cells were then activated with thrombin with or without an ATIII pretreatment. Blood samples from subjects with normal haemoglobin (HbAA) and subjects with homozygous SCD (HbSS) were used to examine RBC adhesion to ECs. Endothelial cell surface adhesion molecule expression and confluency in response to thrombin and ATIII treatments were also evaluated. We found that ATIII pretreatment of ECs reduced HbSS RBC adhesion to thrombin-activated endothelium. Furthermore, ATIII mitigated cellular contraction and reduced surface expression of von Willebrand factor and vascular cell adhesion molecule-1 (VCAM-1) mediated by thrombin. Our findings suggest that, by attenuating thrombin-mediated EC damage and RBC adhesion to endothelium, ATIII may alleviate the thromboinflammatory manifestations of SCD.


Asunto(s)
Anemia de Células Falciformes , Trombina , Anticoagulantes/farmacología , Antitrombinas/metabolismo , Antitrombinas/farmacología , Adhesión Celular , Células Endoteliales , Endotelio Vascular/metabolismo , Eritrocitos , Humanos , Trombina/metabolismo , Trombina/farmacología
5.
Microcirculation ; 28(2): e12662, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33025653

RESUMEN

OBJECTIVES: We present a standardized in vitro microfluidic assay and Occlusion Index (OI) for the assessment of red blood cell (RBC)-mediated microcapillary occlusion and its clinical associations in sickle cell disease (SCD). METHODS: Red blood cell mediated microcapillary occlusion represented by OI and its clinical associations were assessed for seven subjects with hemoglobin-SC disease (HbSC), 18 subjects with homozygous SCD (HbSS), and five control individuals (HbAA). RESULTS: We identified two sub-populations with HbSS based on the OI distribution. HbSS subjects with relatively higher OIs had significantly lower hemoglobin levels, lower fetal hemoglobin (HbF) levels, and lower mean corpuscular volume (MCV), but significantly higher serum lactate dehydrogenase levels and absolute reticulocyte counts, compared to subjects with HbSS and lower OIs. HbSS subjects who had relatively higher OIs were more likely to have had a concomitant diagnosis of intrapulmonary shunting (IPS). Further, lower OI associated with hydroxyurea (HU) responsiveness in subjects with HbSS, as evidenced by significantly elevated HbF levels and MCV. CONCLUSIONS: We demonstrated that RBC-mediated microcapillary occlusion and OI associated with subject clinical phenotype and HU responsiveness in SCD. The presented standardized microfluidic assay may be useful for evaluating clinical phenotype and assessing therapeutic outcomes in SCD, including emerging targeted and curative treatments that aim to improve RBC deformability and microcirculatory health.


Asunto(s)
Anemia de Células Falciformes , Hidroxiurea , Anemia de Células Falciformes/tratamiento farmacológico , Eritrocitos , Hemoglobinas , Humanos , Hidroxiurea/uso terapéutico , Microcirculación , Microfluídica , Fenotipo
6.
Blood Cells Mol Dis ; 83: 102424, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32208292

RESUMEN

Upregulated expression of P-selectin on activated endothelium and platelets significantly contributes to the initiation and progression of vaso-occlusive crises (VOC), a major cause of morbidity in sickle cell disease (SCD). Crizanlizumab (ADAKVEO®), a humanized monoclonal antibody against P-selectin, primarily inhibits the interaction between leukocytes and P-selectin, and has been shown to decrease the frequency of VOCs in clinical trials. However, the lack of reliable in vitro assays that objectively measure leukocyte adhesion to P-selectin remains a critical barrier to evaluating and improving the therapeutic treatment in SCD. Here, we present a standardized microfluidic BioChip whole blood adhesion assay to assess leukocyte adhesion to P-selectin under physiologic flow conditions. Our results demonstrated heterogeneous adhesion by leukocytes to immobilized P-selectin, and dose-dependent inhibition of this adhesion following pre-exposure to Crizanlizumab. Importantly, treatment with Crizanlizumab following adhesion to P-selectin promoted detachment of rolling, but not of firmly adherent leukocytes. Taken together, our results suggest that the microfluidic BioChip system is a promising in vitro assay with which to screen patients, monitor treatment response, and guide current and emerging anti-adhesive therapies in SCD.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacología , Adhesión Celular/efectos de los fármacos , Leucocitos/efectos de los fármacos , Selectina-P/antagonistas & inhibidores , Adulto , Anciano , Femenino , Humanos , Dispositivos Laboratorio en un Chip/normas , Leucocitos/citología , Masculino , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/normas , Persona de Mediana Edad , Adulto Joven
7.
Am J Hematol ; 95(11): 1246-1256, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32656816

RESUMEN

Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the ß-globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.


Asunto(s)
Anemia de Células Falciformes/sangre , Viscosidad Sanguínea , Adhesión Celular , Eritrocitos Anormales/metabolismo , Biomarcadores/sangre , Femenino , Humanos , Masculino
8.
Blood Cells Mol Dis ; 79: 102350, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31404907

RESUMEN

Priapism is a serious, but episodic, complication of sickle cell disease (SCD). We had previously reported that subjects with SCD had variable red blood cell (RBC) adhesion to the immobilized sub-endothelial protein laminin (LN). We examined adhesion to LN in a microfluidic device, of RBCs from men with homozygous sickle cell anemia. Adhesion under hypoxic, but not ambient, conditions was greater in men with a history of priapism, with median adhesion of 529 RBCs per 32 mm2/unit area (range 5-5248) rising to 3268 RBCs per 32 mm2/unit area (range 49-18,368, P = 0.004), under ambient and hypoxic conditions, respectively (n = 14). This was not seen in RBCs from men without a history of priapism (median 402 (range 14-785) and 122 (range 31-4112) RBCs per 32 mm2/unit area, ambient and hypoxic conditions, respectively (P = N.S., N = 12)). We also observed an association between hypoxia-enhanced RBC adhesion in vitro and a history of hemoglobin desaturation in vivo independent of priapism. Prolonged Hb desaturation may increase sickle polymer formation and RBC damage, resulting in enhanced RBC adhesion, hemolysis, and endothelial dysfunction. The identification of distinct RBC phenotypes could prompt clinical evaluation for suitability for novel or under-used therapies, like oxygen.


Asunto(s)
Anemia de Células Falciformes/sangre , Adhesión Celular , Eritrocitos/patología , Hemoglobinas/metabolismo , Priapismo , Humanos , Hipoxia/complicaciones , Laminina/metabolismo , Masculino
9.
Am J Hematol ; 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905377

RESUMEN

In sickle cell disease (SCD), 'disease severity' associates with increased RBC adhesion to quiescent endothelium, but the impact on activated endothelium is not known. Increased concentrations of free heme result from intravascular hemolysis in SCD. Heme is essential for aerobic metabolism, and plays an important role in numerous biological processes. Excess free heme induces reactive oxygen species generation and endothelial activation, which are associated with cardiovascular disorders including atherosclerosis, hypertension, and thrombosis. Here, we utilized an endothelialized microfluidic platform (Endothelium-on-a-chip) to assess adhesion of sickle hemoglobin-containing red blood cells (HbS RBCs), from adults with homozygous SCD, to heme-activated human endothelial cells (EC) in vitro. Confluent EC monolayers in microchannels were treated with pathophysiologically relevant levels of heme in order to simulate the highly hemolytic intravascular milieu seen in SCD. RBC adhesion to heme-activated ECs varied from subject to subject, and was associated with plasma markers of hemolysis (LDH) and reticulocytosis, thereby linking those RBCs that are most likely to adhere with those that are most likely to hemolyze. These results re-emphasize the critical contribution made by heterogeneous adhesive HbS RBCs to the pathophysiology of SCD. We found that adhesion of HbS RBCs to heme-activated ECs varied amongst individuals in the study population, and associated with biomarkers of hemolysis and inflammation, age, and a recent history of transfusion. Importantly, the microfluidic approach described herein holds promise as a clinically feasible Endothelium-on-a-chip platform with which to study complex heterocellular adhesive interactions in SCD. This article is protected by copyright. All rights reserved.

10.
J Biomech ; 150: 111505, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867952

RESUMEN

Fibronectin (Fn) has been observed to assemble in the extracellular matrix (ECM) of cell culture and stretch in response to the external force. The alteration of molecule domain functions generally follows the extension of Fn. Several researchers have investigated fibronectin extensively in molecular architecture and conformation structure. However, the bulk material behavior of the Fn in the ECM has not been fully depicted at the cell scale, and many studies have ignored physiological conditions. Conversely, microfluidic techniques that explore cellular properties based on cell deformation and adhesion have emerged as a powerful and effective platform to study cell rheological transformation in a physiological environment. However, directly quantifying properties from microfluidic measurements remains a challenge. Therefore, it is an efficient way to combine experimental measurements with a robust and reliable numerical framework to calibrate the mechanical stress distribution in the test sample. In this paper, we present a monolithic Lagrangian fluid-structure interaction (FSI) approach within the Optimal Transportation Meshfree (OTM) framework that enables the investigation of the adherent Red Blood Cell (RBC) interacting with fluid and overcomes the drawbacks of the traditional computational tools such as the mesh entanglement and interface tracking, etc. This study aims to assess the material properties of the RBC and Fn fiber by calibrating the numerical predictions to experimental measurements. Moreover, a physical-based constitutive model will be proposed to describe the bulk behavior of the Fn fiber inflow, and the rate-dependent deformation and separation of the Fn fiber will be discussed.


Asunto(s)
Fibronectinas , Fenómenos Mecánicos , Fibronectinas/análisis , Fibronectinas/química , Fibronectinas/metabolismo , Conformación Molecular , Estrés Mecánico , Eritrocitos/metabolismo , Matriz Extracelular/metabolismo , Adhesión Celular
11.
Biosens Bioelectron ; 222: 114921, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521205

RESUMEN

Neutrophil recruitment to the inflamed endothelium is a multistep process and is of utmost importance in the development of the hallmark vaso-occlusive crisis in sickle cell disease (SCD). However, there lacks a standardized, clinically feasible approach for assessing neutrophil recruitment to the inflamed endothelium for individualized risk stratification and therapeutic response prediction in SCD. Here, we describe a microfluidic device functionalized with E-selectin, a critical endothelial receptor for the neutrophil recruitment process, as a strategy to assess neutrophil binding under physiologic flow in normoxia and clinically relevant hypoxia in SCD. We show that hypoxia significantly enhances neutrophil binding to E-selectin and promotes the formation of neutrophil-platelet aggregates. Moreover, we identified two distinct patient populations: a more severe clinical phenotype with elevated lactate dehydrogenase levels and absolute reticulocyte counts but lowered fetal hemoglobin levels associated with constitutively less neutrophil binding to E-selectin. Mechanistically, we demonstrate that the extent of neutrophil activation correlates with membrane L-selectin shedding, resulting in the loss of ligand interaction sites with E-selectin. We also show that inhibition of E-selectin significantly reduces leukocyte recruitment to activated endothelial cells. Our findings add mechanistic insight into neutrophil-endothelial interactions under hypoxia and provide a clinically feasible means for assessing neutrophil binding to E-selectin using clinical whole blood samples, which can help guide therapeutic decisions for SCD patients.


Asunto(s)
Anemia de Células Falciformes , Técnicas Biosensibles , Humanos , Selectina E/uso terapéutico , Células Endoteliales/metabolismo , Infiltración Neutrófila , Adhesión Celular , Endotelio/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Dispositivos Laboratorio en un Chip , Hipoxia
12.
Blood Adv ; 7(10): 2094-2104, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-36652689

RESUMEN

Abnormal erythrocyte adhesion owing to polymerization of sickle hemoglobin is central to the pathophysiology of sickle cell disease (SCD). Mature erythrocytes constitute >80% of all erythrocytes in SCD; however, the relative contributions of erythrocytes to acute and chronic vasculopathy in SCD are not well understood. Here, we showed that bending stress exerted on the erythrocyte plasma membrane by polymerization of sickle hemoglobin under hypoxia, enhances sulfatide-mediated abnormal mature erythrocyte adhesion. We hypothesized that sphingomyelinase (SMase) activity, which is upregulated by accumulated bending energy, leads to elevated membrane sulfatide availability, and thus, hypoxic mature erythrocyte adhesion. We found that mature erythrocyte adhesion to laminin in controlled microfluidic experiments is significantly greater under hypoxia than under normoxia (1856 ± 481 vs 78 ± 23, mean ± SEM), whereas sickle reticulocyte (early erythrocyte) adhesion, high to begin with, does not change (1281 ± 299 vs 1258 ± 328, mean ± SEM). We showed that greater mean accumulated bending energy of adhered mature erythrocytes was associated with higher acid SMase activity and increased mature erythrocyte adhesion (P = .022, for acid SMase activity and P = .002 for the increase in mature erythrocyte adhesion with hypoxia, N = 5). In addition, hypoxia results in sulfatide exposure of the erythrocyte membrane, and an increase in SMase, whereas anti-sulfatide inhibits enhanced adhesion of erythrocytes. These results suggest that the lipid components of the plasma membrane contribute to SCD complications. Therefore, sulfatide and the components of its upregulation pathway, particularly SMase, should be further explored as potential therapeutic targets for inhibiting sickle erythrocyte adhesion.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Humanos , Hemoglobina Falciforme/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Eritrocitos/metabolismo , Membrana Eritrocítica/metabolismo , Hipoxia/metabolismo
13.
Front Physiol ; 13: 954106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091387

RESUMEN

Red blood cell (RBC) deformability is a valuable hemorheological biomarker that can be used to assess the clinical status and response to therapy of individuals with sickle cell disease (SCD). RBC deformability has been measured by ektacytometry for decades, which uses shear or osmolar stress. However, ektacytometry is a population based measurement that does not detect small-fractions of abnormal RBCs. A single cell-based, functional RBC deformability assay would complement ektacytometry and provide additional information. Here, we tested the relative merits of the OcclusionChip, which measures RBC deformability by microcapillary occlusion, and ektacytometry. We tested samples containing glutaraldehyde-stiffened RBCs for up to 1% volume fraction; ektacytometry detected no significant change in Elongation Index (EI), while the OcclusionChip showed significant differences in Occlusion Index (OI). OcclusionChip detected a significant increase in OI in RBCs from an individual with sickle cell trait (SCT) and from a subject with SCD who received allogeneic hematopoietic stem cell transplant (HSCT), as the sample was taken from normoxic (pO2:159 mmHg) to physiologic hypoxic (pO2:45 mmHg) conditions. Oxygen gradient ektacytometry detected no difference in EI for SCT or HSCT. These results suggest that the single cell-based OcclusionChip enables detection of sickle hemoglobin (HbS)-related RBC abnormalities in SCT and SCD, particularly when the HbS level is low. We conclude that the OcclusionChip is complementary to the population based ektacytometry assays, and providing additional sensitivity and capacity to detect modest abnormalities in red cell function or small populations of abnormal red cells.

14.
Lab Chip ; 21(20): 3863-3875, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34585199

RESUMEN

Anemia affects over 25% of the world's population with the heaviest burden borne by women and children. Genetic hemoglobin (Hb) variants, such as sickle cell disease, are among the major causes of anemia. Anemia and Hb variant are pathologically interrelated and have an overlapping geographical distribution. We present the first point-of-care (POC) platform to perform both anemia detection and Hb variant identification, using a single paper-based electrophoresis test. Feasibility of this new integrated diagnostic approach is demonstrated via testing individuals with anemia and/or sickle cell disease. Hemoglobin level determination is performed by an artificial neural network (ANN) based machine learning algorithm, which achieves a mean absolute error of 0.55 g dL-1 and a bias of -0.10 g dL-1 against the gold standard (95% limits of agreement: 1.5 g dL-1) from Bland-Altman analysis on the test set. Resultant anemia detection is achieved with 100% sensitivity and 92.3% specificity. With the same tests, subjects with sickle cell disease were identified with 100% sensitivity and specificity. Overall, the presented platform enabled, for the first time, integrated anemia detection and hemoglobin variant identification using a single point-of-care test.


Asunto(s)
Anemia de Células Falciformes , Electroforesis por Microchip , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/genética , Femenino , Pruebas Hematológicas , Hemoglobinas/análisis , Hemoglobinas/genética , Humanos , Sistemas de Atención de Punto , Pruebas en el Punto de Atención
15.
Lab Chip ; 21(10): 1843-1865, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33881041

RESUMEN

Anemia, characterized by low blood hemoglobin level, affects about 25% of the world's population with the heaviest burden borne by women and children. Anemia leads to impaired cognitive development in children, as well as high morbidity and early mortality among sufferers. Anemia can be caused by nutritional deficiencies, oncologic treatments and diseases, and infections such as malaria, as well as inherited hemoglobin or red cell disorders. Effective treatments are available for anemia upon early detection and the treatment method is highly dependent on the cause of anemia. There is a need for point-of-care (POC) screening, early diagnosis, and monitoring of anemia, which is currently not widely accessible due to technical challenges and cost, especially in low- and middle-income countries where anemia is most prevalent. This review first introduces the evolution of anemia detection methods followed by their implementation in current commercially available POC anemia diagnostic devices. Then, emerging POC anemia detection technologies leveraging new methods are reviewed. Finally, we highlight the future trends of integrating anemia detection with the diagnosis of relevant underlying disorders to accurately identify specific root causes and to facilitate personalized treatment and care.


Asunto(s)
Anemia , Sistemas de Atención de Punto , Anemia/diagnóstico , Hemoglobinas/análisis , Humanos , Tamizaje Masivo
16.
Blood Adv ; 4(15): 3688-3698, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32777069

RESUMEN

Sickle cell disease (SCD), which afflicts 100 000 Americans, as well as millions worldwide, is associated with anemia, lifelong morbidity, and early mortality. Abnormal adhesion of sickle red blood cells (RBCs) to activated vascular endothelium may contribute acutely to the initiation of painful vaso-occlusive crises and chronically to endothelial damage in SCD. Sickle RBCs adhere to activated endothelium through several adhesion mechanisms. In this study, using whole blood from 17 people with heterozygous SCD (HbS variant) and 55 people with homozygous SCD (HbSS) analyzed in an in vitro microfluidic assay, we present evidence for the adhesion of sickle RBCs to immobilized recombinant intercellular adhesion molecule 1 (ICAM-1). We show that sickle RBC adhesion to ICAM-1 in vitro is associated with evidence of hemolysis in vivo, marked by elevated lactate dehydrogenase levels, reticulocytosis, and lower fetal hemoglobin levels. Further, RBC adhesion to ICAM-1 correlates with a history of intracardiac or intrapulmonary right-to-left shunts. Studies of potential ICAM-1 ligands on RBC membranes revealed that RBC-ICAM-1 interactions were mediated by fibrinogen bound to the RBC membrane. We describe, for the first time, RBC rolling behavior on ICAM-1 under high shear rates. Our results suggest that firm adhesion of sickle RBCs to ICAM-1 most likely occurs in postcapillary venules at low physiological shear rates, which is facilitated by initial rolling in high shear regions (eg, capillaries). Inhibition of RBC and ICAM-1 interactions may constitute a novel therapeutic target in SCD.


Asunto(s)
Anemia de Células Falciformes , Molécula 1 de Adhesión Intercelular , Adhesión Celular , Eritrocitos , Fibrinógeno , Humanos , Molécula 1 de Adhesión Intercelular/genética
17.
Lab Chip ; 20(12): 2086-2099, 2020 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-32427268

RESUMEN

Abnormal red blood cell (RBC) deformability contributes to hemolysis, thrombophilia, inflammation, and microvascular occlusion in various circulatory diseases. A quantitative and objective assessment of microvascular occlusion mediated by RBCs with abnormal deformability would provide valuable insights into disease pathogenesis and therapeutic strategies. To that end, we present a new functional microfluidic assay, OcclusionChip, which mimics two key architectural features of the capillary bed in the circulatory system. First, the embedded micropillar arrays within the microchannel form gradient microcapillaries, from 20 µm down to 4 µm, which mimic microcapillary networks. These precisely engineered microcapillaries retain RBCs with impaired deformability, such that stiffer RBCs occlude the wider upstream microcapillaries, while less stiff RBCs occlude the finer downstream microcapillaries. Second, the micropillar arrays are coupled with two side passageways, which mimic the arteriovenous anastomoses that act as shunts in the capillary bed. These side microfluidic anastomoses prevent microchannel blockage, and enable versatility and testing of clinical blood samples at near-physiologic hematocrit levels. Further, we define a new generalizable parameter, Occlusion Index (OI), which is an indicative index of RBC deformability and the associated microcapillary occlusion. We demonstrate the promise of OcclusionChip in diverse pathophysiological scenarios that result in impaired RBC deformability, including mercury toxin, storage lesion, end-stage renal disease, malaria, and sickle cell disease (SCD). Hydroxyurea therapy improves RBC deformability and increases fetal hemoglobin (HbF%) in some, but not all, treated patients with SCD. HbF% greater than 8.6% has been shown to improve clinical outcomes in SCD. We show that OI associates with HbF% in 16 subjects with SCD. Subjects with higher HbF levels (HbF > 8.6%) displayed significantly lower OI (0.88% ± 0.10%, N = 6) compared with those with lower HbF levels (HbF ≤ 8.6%) who displayed greater OI (3.18% ± 0.34%, N = 10, p < 0.001). Moreover, hypoxic OcclusionChip assay revealed a significant correlation between hypoxic OI and subject-specific sickle hemoglobin (HbS) level in SCD. OcclusionChip enables versatile in vitro assessment of microvascular occlusion mediated by RBCs in a wide range of clinical conditions. OI may serve as a new parameter to evaluate the efficacy of treatments improving RBC deformability, including hemoglobin modifying drugs, anti-sickling agents, and genetic therapies.


Asunto(s)
Anemia de Células Falciformes , Microfluídica , Deformación Eritrocítica , Eritrocitos , Hemoglobinas , Humanos
18.
Biochim Biophys Acta Biomembr ; 1861(6): 1162-1171, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30890469

RESUMEN

Exposure to mercury is associated with numerous health problems, affecting different parts of the human body, including the nervous and cardiovascular systems in adults and children; however, the underlying mechanisms are yet to be fully elucidated. We investigated the role of membrane sulfatide on mercuric ion (Hg2+) mediated red blood cell (RBC) adhesion to a sub-endothelial matrix protein, laminin, using a microfluidic system that mimics microphysiological flow conditions. We exposed whole blood to mercury (HgCl2), at a range of concentrations to mimic acute (high dose) and chronic (low dose) exposure, and examined RBC adhesion to immobilized laminin in microchannels at physiological flow conditions. Exposure of RBCs to both acute and chronic levels of Hg2+ resulted in elevated adhesive interactions between RBCs and laminin depending on the concentration of HgCl2 and exposure duration. BCAM-Lu chimer significantly inhibited the adhesion of RBCs that had been treated with 50 µM of HgCl2 solution for 1 h at 37 °C, while it did not prevent the adhesion of 3 h and 24 h Hg2+-treated RBCs. Sulfatide significantly inhibited the adhesion of RBC that had been treated with 50 µM of HgCl2 solution for 1 h at 37 °C and 0.5 µM of HgCl2 solution for 24 h at room temperature (RT). We demonstrated that RBC BCAM-Lu and RBC sulfatides bind to immobilized laminin, following exposure of RBCs to mercuric ions. The results of this study are significant considering the potential associations between sulfatides, red blood cells, mercury exposure, and cardiovascular diseases.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Eritrocitos Anormales/metabolismo , Cloruro de Mercurio/toxicidad , Relación Dosis-Respuesta a Droga , Eritrocitos Anormales/citología , Humanos , Laminina/metabolismo , Cloruro de Mercurio/administración & dosificación
19.
Integr Biol (Camb) ; 10(4): 194-206, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29557482

RESUMEN

Non-adherence and deformability are the key intrinsic biomechanical features of the red blood cell (RBC), which allow it to tightly squeeze and pass through even the narrowest of microcirculatory networks. Blockage of microcirculatory flow, also known as vaso-occlusion, is a consequence of abnormal cellular adhesion to the vascular endothelium. In sickle cell disease (SCD), an inherited anaemia, even though RBCs have been shown to be heterogeneous in adhesiveness and deformability, this has not been studied in the context of physiologically relevant dynamic shear gradients at the microscale. We developed a microfluidic system that simulates physiologically relevant shear gradients of microcirculatory blood flow at a constant single volumetric flow rate. Using this system, shear dependent adhesion of RBCs from 28 subjects with SCD and from 11 healthy subjects was investigated using vascular endothelial protein functionalized microchannels. We defined a new term, RBC Shear Gradient Microfluidic Adhesion (SiGMA) index to assess shear dependent RBC adhesion in a subject-specific manner. We have shown for the first time that shear dependent adhesion of RBCs is heterogeneous in a microfluidic flow model, which correlates clinically with inflammatory markers and iron overload in subjects with SCD. This study reveals the complex dynamic interactions between RBC-mediated microcirculatory occlusion and clinical outcomes in SCD. These interactions may also be relevant to other microcirculatory disorders and microvascular diseases.


Asunto(s)
Adhesión Celular , Eritrocitos/citología , Estrés Mecánico , Adulto , Anemia de Células Falciformes/sangre , Simulación por Computador , Endotelio Vascular , Femenino , Homocigoto , Humanos , Masculino , Microcirculación , Microfluídica , Persona de Mediana Edad , Fenotipo , Adulto Joven
20.
J Clin Invest ; 128(3): 944-959, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29376892

RESUMEN

Coagulation factor XII (FXII) deficiency is associated with decreased neutrophil migration, but the mechanisms remain uncharacterized. Here, we examine how FXII contributes to the inflammatory response. In 2 models of sterile inflammation, FXII-deficient mice (F12-/-) had fewer neutrophils recruited than WT mice. We discovered that neutrophils produced a pool of FXII that is functionally distinct from hepatic-derived FXII and contributes to neutrophil trafficking at sites of inflammation. FXII signals in neutrophils through urokinase plasminogen activator receptor-mediated (uPAR-mediated) Akt2 phosphorylation at S474 (pAktS474). Downstream of pAkt2S474, FXII stimulation of neutrophils upregulated surface expression of αMß2 integrin, increased intracellular calcium, and promoted extracellular DNA release. The sum of these activities contributed to neutrophil cell adhesion, migration, and release of neutrophil extracellular traps in a process called NETosis. Decreased neutrophil signaling in F12-/- mice resulted in less inflammation and faster wound healing. Targeting hepatic F12 with siRNA did not affect neutrophil migration, whereas WT BM transplanted into F12-/- hosts was sufficient to correct the neutrophil migration defect in F12-/- mice and restore wound inflammation. Importantly, these activities were a zymogen FXII function and independent of FXIIa and contact activation, highlighting that FXII has a sophisticated role in vivo that has not been previously appreciated.


Asunto(s)
Factor XII/metabolismo , Neutrófilos/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Cicatrización de Heridas , Animales , Calcio/metabolismo , Adhesión Celular , Movimiento Celular , Células Cultivadas , Trampas Extracelulares , Femenino , Humanos , Inflamación , Leucocitos/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peritonitis/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA