Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mikrochim Acta ; 191(7): 408, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898321

RESUMEN

The introduced work represents an implementation of the automatic benchtop electrochemical station (BES) as an effective tool for the possibilities of high-throughput preparation of modified sensor/biosensors, speeding up the development of the analytical method, and automation of the analytical procedure for the determination of paracetamol (PAR) and dopamine (DOP) as target analytes. Within the preparation of gold nanoparticles modified screen-printed carbon electrode (AuNPs-SPCE) by electrodeposition, the deposition potential EDEP, the deposition time tDEP, and the concentration of HAuCl4 were optimized and their influence was monitored on 1 mM [Ru(NH3)6]3+/2+ redox probe and 50 µM DOP. The morphology of the AuNPs-SPCE prepared at various modification conditions was observed by SEM. The analytical performance of the AuNPs-SPCE prepared at different modification conditions was evaluated by a construction of the calibration curves of DOP and PAR. SPCE and AuNPs-SPCE at modification condition providing the best sensitivity to PAR and DOP, were successfully used to determine PAR and DOP in tap water by "spike-recovery" approach. The BES yields better reproducibility of the preparation of AuNPs-SPCE (RSD = 3.0%) in comparison with the case when AuNPs-SPCE was prepared manually by highly skilled laboratory operator (RSD = 7.0%).


Asunto(s)
Acetaminofén , Dopamina , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Acetaminofén/análisis , Dopamina/análisis , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Electrodos , Técnicas Biosensibles/métodos , Límite de Detección , Carbono/química
2.
Trends Analyt Chem ; 136: 116192, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33487783

RESUMEN

Coronavirus disease (COVID-19) caused by SARS-CoV-2 has spread since the end of 2019 and has resulted in a pandemic with unprecedented socioeconomic consequences. This situation has created enormous demand for the improvement of current diagnostic methods and the development of new diagnostic methods for fast, low-cost and user-friendly confirmation of SARS-CoV-2 infection. This critical review focuses on viral electrochemical biosensors that are promising for the development of rapid medical COVID-19 diagnostic tools. The molecular biological properties of SARS-CoV-2 as well as currently known biochemical attributes of infection necessary for biosensor development are outlined. The advantages and drawbacks of conventional diagnostic methods, such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), are critically discussed. Electrochemical biosensors focusing on viral nucleic acid and whole viral particle detection are highlighted and discussed in detail. Finally, future perspectives on viral electrochemical biosensor development are briefly mentioned.

3.
Molecules ; 24(18)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533260

RESUMEN

From the rediscovery of graphene in 2004, the interest in layered graphene analogs has been exponentially growing through various fields of science. Due to their unique properties, novel two-dimensional family of materials and especially transition metal dichalcogenides are promising for development of advanced materials of unprecedented functions. Progress in 2D materials synthesis paved the way for the studies on their hybridization with other materials to create functional composites, whose electronic, physical or chemical properties can be engineered for special applications. In this review we focused on recent progress in graphene-based and MoS2 hybrid nanostructures. We summarized and discussed various fabrication approaches and mentioned different 2D and 3D structures of composite materials with emphasis on their advances for electroanalytical chemistry. The major part of this review provides a comprehensive overview of the application of graphene-based materials and MoS2 composites in the fields of electrochemical sensors and biosensors.


Asunto(s)
Técnicas Biosensibles , Disulfuros/química , Técnicas Electroquímicas , Grafito/química , Molibdeno/química , Nanocompuestos/química , Fenómenos Químicos , Técnicas de Química Sintética , Nanocompuestos/ultraestructura , Nanotecnología
4.
Molecules ; 23(10)2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30274319

RESUMEN

Glutathione (γ-glutamyl-cysteinyl-glycine; also known as GSH) is an endogenous antioxidant that plays a crucial role in cell defense mechanisms against oxidative stress. It is thus not surprising that this molecule can serve as a biomarker for oxidative stress monitoring. As capillary blood is a highly accessible target for biomarking, it is a valuable bodily fluid for diagnosing human GSH levels. This study focused on the optimization of GSH measurements from micro volumes of capillary blood prior to using electrochemical detection. The optimization of experimental parameters, including the sample volume and its stability, was performed and evaluated. Moreover, we tested the optimized method as part of a short-term study. The study consisted of examining 10 subjects within 96 h of their consumption of high amounts of antioxidants, attained from a daily dose of 2 g/150 mL of green tea. The subjects' capillary blood (5 µL) was taken at 0 h, 48 h, and 96 h for subsequent analysis. The short-term supplementation of diet with green tea showed an increase of GSH pool by approximately 38% (between 0 and 48 h) within all subjects.


Asunto(s)
Glutatión/sangre , Té/química , Adulto , Capilares , Dieta , Técnicas Electroquímicas , Femenino , Disulfuro de Glutatión/sangre , Humanos , Masculino
5.
Analyst ; 141(19): 5577-85, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27435634

RESUMEN

In this study, the enhancement of electrochemical signals of Cr(iii) and Cr(vi) by using an activated glassy carbon electrode (GCE) measured by differential pulse voltammetry (DPV) is demonstrated. The activated GCE exhibited higher sensitivity for detection of Cr(iii) and Cr(vi) compared with the bare GCE. By using the activated GCE, the limit of detection decreased 15.3 times (from 0.230 to 0.015 µM) in the case of Cr(iii) determination and 75 times (from 9.000 to 0.120 µM) in the case of Cr(vi) determination. Moreover, a simultaneous speciation analysis of Cr(iii) and Cr(vi) using the activated GCE was presented. Scanning electron microscopy, elemental mapping, and electrochemical impedance spectroscopy were employed for investigation of the surface of the activated GCE. Finally, the influence of different ions (Na(+), K(+), NH4(+), SO4(2-), NO3(-), and Cl(-) in the form of Na2SO4, NaNO3, NH4Cl, and KCl salts) on the speciation signals of Cr(iii) and Cr(vi) in a mixture of the two Cr oxidation states was investigated.

6.
Analyst ; 141(9): 2665-75, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-26882954

RESUMEN

In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.


Asunto(s)
Carbono/química , Electroquímica/métodos , Etopósido/análisis , Vidrio/química , Puntos Cuánticos/química , Línea Celular Tumoral , Electroquímica/instrumentación , Electrodos , Etopósido/química , Etopósido/farmacología , Humanos , Límite de Detección , Povidona/química
7.
Sensors (Basel) ; 16(3): 290, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26927112

RESUMEN

Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL(-1), respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene.


Asunto(s)
ADN sin Sentido/uso terapéutico , Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita/química , Neoplasias/tratamiento farmacológico , ADN sin Sentido/química , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Elipticinas/química , Elipticinas/uso terapéutico , Etopósido/química , Etopósido/uso terapéutico , Fluorescencia , Oro/química , Humanos , Liposomas/química , Liposomas/uso terapéutico , Nanopartículas de Magnetita/uso terapéutico , Proteína Proto-Oncogénica N-Myc/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/genética
8.
Electrophoresis ; 36(19): 2367-79, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26046318

RESUMEN

Nanofluidics is becoming an extensively developing technique in the field of bioanalytical chemistry. Nanoscale hole embed in an insulating membrane is employed in a vast variety of sensing platforms and applications. Although, biological nanopores have several attractive characteristics, in this paper, we focused on the solid-state nanopores due to their advantages as high stability, possibility of diameter control, and ease of surface functionalizing. A detection method, based on the translocation of analyzed molecules through nanochannels under applied voltage bias and resistive pulse sensing, is well established. Nevertheless, it seems that the new detection methods like measuring of transverse electron tunneling using nanogap electrodes or optical detection can offer significant additional advantages. The aim of this review is not to cite all related articles, but highlight the steps, which in our opinion, meant important progresses in solid-state nanopore analysis.


Asunto(s)
Electrónica , Nanoporos , Nanotecnología , Técnicas Analíticas Microfluídicas , Propiedades de Superficie
9.
Electrophoresis ; 35(2-3): 393-404, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23868417

RESUMEN

Microfluidic techniques have been developed intensively in recent years due to lower reagent consumption, faster analysis, and possibility of the integration of several analytical detectors into one chip. Electrochemical detectors are preferred in microfluidic systems, whereas liposomes can be used for amplification of the electrochemical signals. The aim of this study was to design a nanodevice for targeted anchoring of liposome as transport device. In this study, liposome with encapsulated Zn(II) was prepared. Further, gold nanoparticles were anchored onto the liposome surface allowing binding of thiol moiety-modified molecules (DNA). For targeted capturing of the transport device, DNA loops were used. DNA loops were represented by paramagnetic microparticles with oligo(DT)25 chain, on which a connecting DNA was bound. Capturing of transport device was subsequently done by hybridization to the loop. The individual steps were analyzed by electrochemistry and UV/Vis spectrometry. For detection of Zn(II) encapsulated in liposome, a microfluidic system was used. The study succeeded in demonstrating that liposome is suitable for the transport of Zn(II) and nucleic acids. Such transporter may be used for targeted binding using DNA anchor system.


Asunto(s)
Liposomas/química , Nanoestructuras/química , Ácidos Nucleicos/química , Oro/química , Liposomas/metabolismo , Liposomas/ultraestructura , Nanopartículas del Metal/química , Técnicas Analíticas Microfluídicas , Nanomedicina/instrumentación , Nanoestructuras/ultraestructura , Ácidos Nucleicos/metabolismo , Zinc/química
10.
Electrophoresis ; 35(16): 2333-45, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24634313

RESUMEN

Remote-controlled robotic systems are being used for analysis of various types of analytes in hostile environment including those called extraterrestrial. The aim of our study was to develop a remote-controlled robotic platform (ORPHEUS-HOPE) for bacterial detection. For the platform ORPHEUS-HOPE a 3D printed flow chip was designed and created with a culture chamber with volume 600 µL. The flow rate was optimized to 500 µL/min. The chip was tested primarily for detection of 1-naphthol by differential pulse voltammetry with detection limit (S/N = 3) as 20 nM. Further, the way how to capture bacteria was optimized. To capture bacterial cells (Staphylococcus aureus), maghemite nanoparticles (1 mg/mL) were prepared and modified with collagen, glucose, graphene, gold, hyaluronic acid, and graphene with gold or graphene with glucose (20 mg/mL). The most up to 50% of the bacteria were captured by graphene nanoparticles modified with glucose. The detection limit of the whole assay, which included capturing of bacteria and their detection under remote control operation, was estimated as 30 bacteria per µL.


Asunto(s)
Microbiología Ambiental , Técnicas Analíticas Microfluídicas/instrumentación , Tecnología de Sensores Remotos/instrumentación , Staphylococcus aureus/aislamiento & purificación , Fosfatasa Alcalina/metabolismo , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Límite de Detección , Nanopartículas de Magnetita/química , Naftoles/aislamiento & purificación , Robótica/instrumentación , Staphylococcus aureus/enzimología
11.
Sensors (Basel) ; 15(1): 592-610, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25558996

RESUMEN

In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933).


Asunto(s)
Electroquímica/métodos , Ambiente , Mercurio/química , Metales Pesados/análisis , Redes Neurales de la Computación , Animales , Automatización , Cadmio/sangre , Calibración , Pollos , Cobre/sangre , Electrodos , Sedimentos Geológicos/química , Humanos , Iones , Plomo/sangre , Metales Pesados/sangre , Análisis de Regresión , Robótica , Zinc/sangre
12.
Microsyst Nanoeng ; 10: 66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784376

RESUMEN

This study presents a rapid and versatile low-cost sample-to-answer system for SARS-CoV-2 diagnostics. The system integrates the extraction and purification of nucleic acids, followed by amplification via either reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or reverse transcription loop-mediated isothermal amplification (RT-LAMP). By meeting diverse diagnostic and reagent needs, the platform yields testing results that closely align with those of commercial RT-LAMP and RT‒qPCR systems. Notable advantages of our system include its speed and cost-effectiveness. The assay is completed within 28 min, including sample loading (5 min), ribonucleic acid (RNA) extraction (3 min), and RT-LAMP (20 min). The cost of each assay is ≈ $9.5, and this pricing is competitive against that of Food and Drug Administration (FDA)-approved commercial alternatives. Although some RNA loss during on-chip extraction is observed, the platform maintains a potential limit of detection lower than 297 copies. Portability makes the system particularly useful in environments where centralized laboratories are either unavailable or inconveniently located. Another key feature is the platform's versatility, allowing users to choose between RT‒qPCR or RT‒LAMP tests based on specific requirements.

13.
Sensors (Basel) ; 13(11): 14417-37, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24233071

RESUMEN

In this study, we focused on microfluidic electrochemical analysis of zinc complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) and ZnS quantum dots (QDs) using printed electrodes. This method was chosen due to the simple (easy to use) instrumentation and variable setting of flows. Reduction signals of zinc under the strictly defined and controlled conditions (pH, temperature, flow rate, accumulation time and applied potential) were studied. We showed that the increasing concentration of the complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) led to a decrease in the electrochemical signal and a significant shift of the potential to more positive values. The most likely explanation of this result is that zinc is strongly bound in the complex and its distribution on the electrode is very limited. Changing the pH from 3.5 to 5.5 resulted in a significant intensification of the Zn(II) reduction signal. The complexes were also characterized by UV/VIS spectrophotometry, chromatography, and ESI-QTOF mass spectrometry.

14.
Int J Mol Sci ; 14(11): 21629-46, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24185911

RESUMEN

Doxorubicin is a commonly used antineoplastic agent in the treatment of many types of cancer. Little is known about the interactions of doxorubicin with cardiac biomolecules. Serious cardiotoxicity including dilated cardiomyopathy often resulting in a fatal congestive heart failure may occur as a consequence of chemotherapy with doxorubicin. The purpose of this study was to determine the effect of exposure to doxorubicin on the changes in major amino acids in tissue of cardiac muscle (proline, taurine, glutamic acid, arginine, aspartic acid, leucine, glycine, valine, alanine, isoleucine, threonine, lysine and serine). An in vitro interaction study was performed as a comparison of amino acid profiles in heart tissue before and after application of doxorubicin. We found that doxorubicin directly influences myocardial amino acid representation even at low concentrations. In addition, we performed an interaction study that resulted in the determination of breaking points for each of analyzed amino acids. Lysine, arginine, ß-alanine, valine and serine were determined as the most sensitive amino acids. Additionally we compared amino acid profiles of myocardium before and after exposure to doxorubicin. The amount of amino acids after interaction with doxorubicin was significantly reduced (p = 0.05). This fact points at an ability of doxorubicin to induce changes in quantitative composition of amino acids in myocardium. Moreover, this confirms that the interactions between doxorubicin and amino acids may act as another factor most likely responsible for adverse effects of doxorubicin on myocardium.


Asunto(s)
Aminoácidos/efectos de los fármacos , Doxorrubicina/efectos adversos , Corazón/efectos de los fármacos , Miocardio/metabolismo , Aminoácidos/metabolismo , Animales , Antineoplásicos , Pollos , Cromatografía por Intercambio Iónico , Doxorrubicina/administración & dosificación , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
15.
Molecules ; 18(12): 14760-79, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24288003

RESUMEN

Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.


Asunto(s)
Técnicas Biosensibles , ADN/química , G-Cuádruplex , Animales , ADN Catalítico/química , Eliminación de Gen , Humanos , Iones/análisis , Iones/química , Metales/análisis , Metales/química , Nanopartículas/química , Ácidos Nucleicos/análisis , Ácidos Nucleicos/química , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Proteínas/análisis , Proteínas/química , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
16.
Anal Methods ; 14(39): 3824-3830, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36193785

RESUMEN

Electrochemical detection systems that provide either quantitative or sample-to-answer information are promising for various analytical applications in the emerging field of point-of-care testing (POCT). Nevertheless, in mobile POC systems optical detection is currently more preferred compared to electrochemical detection due to the insufficient robustness of electrochemical detection approaches toward "real world" use. Over the last couple of decades, screen-printed electrodes (SPEs) have emerged as a simple and low-cost electrochemical detection platform. Here, we report, firstly and solely, a novel benchtop system for the processing of electrochemical methods on SPE platforms. Our solution prevents operator errors from occurring while processing and testing SPEs, achieves an automatic processing of more than 300 electrodes per day and enables comparative testing due to the presence of two simultaneous working channels; furthermore, the SPEs used can be stored in specially-designed cartridges. This novel device helps to overcome the major disadvantages in processing SPE technology, such as a low level of automation and issues with process repeatability, making this technology more efficient and enabling faster growth in industry.


Asunto(s)
Técnicas Electroquímicas , Técnicas Electroquímicas/métodos , Electrodos
17.
Biosens Bioelectron ; 156: 112109, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32275576

RESUMEN

The design and application of an inkjet-printed electrochemically reduced graphene oxide microelectrode for HT-2 mycotoxin immunoenzymatic biosensing is reported. A water-based graphene oxide ink was first formulated and single-drop line working microelectrodes were inkjet-printed onto poly(ethylene 2,6-naphthalate) substrates, with dimensions of 78 µm in width and 30 nm in height after solvent evaporation. The printed graphene oxide microelectrodes were electrochemically reduced and characterized by Raman and X-ray photoelectron spectroscopies in addition to microscopies. Through optimization of the electrochemical reduction parameters, differential pulse voltammetry were performed to examine the sensing of 1-naphthol (1-N), where it was revealed that reduction times had significant effects on electrode performance. The developed microelectrodes were then used as an immunoenzymatic biosensor for the detection of HT-2 mycotoxin based on carbodiimide linking of the microelectrode surface and HT-2 toxin antigen binding fragment of antibody (anti-HT2 (10) Fab). The HT-2 toxin and anti-HT2 (10) Fab reaction was reported by anti-HT2 immune complex single-chain variable fragment of antibody fused with alkaline phosphatase (anti-IC-HT2 scFv-ALP) which is able to produce an electroactive reporter - 1-N. The biosensor showed detection limit of 1.6 ng ∙ mL-1 and a linear dynamic range of 6.3 - 100.0 ng ∙ mL-1 within a 5 min incubation with 1-naphthyl phosphate (1-NP) substrate.


Asunto(s)
Técnicas Biosensibles/instrumentación , Grafito/química , Toxina T-2/análogos & derivados , Anticuerpos Inmovilizados/química , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Técnicas para Inmunoenzimas/instrumentación , Microelectrodos , Oxidación-Reducción , Tiras Reactivas/análisis , Toxina T-2/análisis
18.
Int J Nanomedicine ; 14: 7609-7624, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31571866

RESUMEN

BACKGROUND: Iron oxide nanoparticles (IONs) have been increasingly utilized in a wide spectrum of biomedical applications. Surface coatings of IONs can bestow a number of exceptional properties, including enhanced stability of IONs, increased loading of drugs or their controlled release. METHODS: Using two-step sonochemical protocol, IONs were surface-coated with polyoxyethylene stearate, polyvinylpyrrolidone or chitosan for a loading of two distinct topo II poisons (doxorubicin and ellipticine). The cytotoxic behavior was tested in vitro against breast cancer (MDA-MB-231) and healthy epithelial cells (HEK-293 and HBL-100). In addition, biocompatibility studies (hemotoxicity, protein corona formation, binding of third complement component) were performed. RESULTS: Notably, despite surface-coated IONs exhibited only negligible cytotoxicity, upon tethering with topo II poisons, synergistic or additional enhancement of cytotoxicity was found in MDA-MB-231 cells. Pronounced anti-migratory activity, DNA fragmentation, decrease in expression of procaspase-3 and enhancement of p53 expression were further identified upon exposure to surface-coated IONs with tethered doxorubicin and ellipticine. Moreover, surface-coated IONs nanoformulations of topo II poisons exhibited exceptional stability in human plasma with no protein corona and complement 3 binding, and only a mild induction of hemolysis in human red blood cells. CONCLUSION: The results imply a high potential of an efficient ultrasound-mediated surface functionalization of IONs as delivery vehicles to improve therapeutic efficiency of topo II poisons.


Asunto(s)
Materiales Biocompatibles Revestidos/química , ADN-Topoisomerasas de Tipo II/metabolismo , Liberación de Fármacos , Compuestos Férricos/química , Nanopartículas/química , Sonicación/métodos , Inhibidores de Topoisomerasa II/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Cinética , Masculino , Electricidad Estática , Propiedades de Superficie , Cicatrización de Heridas/efectos de los fármacos
19.
J Vis Exp ; (129)2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29155773

RESUMEN

Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.


Asunto(s)
ADN/química , Magnetismo/métodos , Fenómenos Electrofisiológicos , Luz , Nanopartículas/química , Unión Proteica , Dispersión de Radiación
20.
Biosens Bioelectron ; 92: 133-139, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28213325

RESUMEN

Here, we aimed our attention at the synthesis of carbon dots (C-dots) with the ability to interact with DNA to suggest an approach for the detection of DNA damage. Primarily, C-dots modified with amine moieties were synthesized using the one-step microwave pyrolysis of citric acid in the presence of diethylenetriamine. The C-dots showed strong photoluminescence with a quantum yield of 4%. In addition, the C-dots (2.8±0.8nm) possessed a good colloidal stability and exhibited a positive surface charge (ζ=36mV) at a neutral pH. An interaction study of the C-dots and the DNA fragment of λ bacteriophage was performed, and the DNA binding resulted in changes to the photoluminescent and absorption properties of the C-dots. A binding of the C-dots to DNA was also observed as a change to DNA electrophoretic mobility and a decreased ability to intercalate ethidium bromide (EtBr). Moreover, the Förster (or fluorescence) resonance energy transfer (FRET) between the C-dots and EtBr was studied, in which the C-dots serve as an excitation energy donor and the EtBr serves as an acceptor. When DNA was damaged using ultraviolet (UV) radiation (λ=254nm) and hydroxyl radicals, the intensity of the emitted photoluminescence at 612nm significantly decreased. The concept was proved on analysis of the genomic DNA from PC-3 cells and DNA isolated from melanoma tissues.


Asunto(s)
Carbono/química , Daño del ADN , Transferencia Resonante de Energía de Fluorescencia/métodos , Sustancias Luminiscentes/química , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Línea Celular Tumoral , ADN/análisis , ADN/genética , Daño del ADN/efectos de la radiación , Humanos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA