Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 30(2): 149-170, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38071476

RESUMEN

Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Intrones/genética , Ribonucleoproteína Nuclear Pequeña U2/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalme del ARN , Empalmosomas/genética , Aminoácidos/genética , Precursores del ARN/genética
2.
Appl Environ Microbiol ; 89(7): e0058323, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37404180

RESUMEN

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using host-associated fecal markers. While there are numerous bacterial MST markers that can be used herein, there are few such viral markers. Here, we designed and tested novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States. Next, we developed two novel probe-based reverse transcription-PCR (RT-PCR) assays based on conserved regions of the ToBRFV genome and tested the markers' sensitivities and specificities using human and non-human animal stool as well as wastewater. The ToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a commonly used viral marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We used the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, these results indicate that ToBRFV is a promising viral human-associated MST marker. IMPORTANCE Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of host-associated MST markers. Here, we designed and tested novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool and highly abundant in human stool and wastewater samples.


Asunto(s)
Solanum lycopersicum , Aguas Residuales , Animales , Frutas , Biomarcadores , Heces/microbiología , Monitoreo del Ambiente/métodos
3.
BMC Microbiol ; 23(1): 299, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864136

RESUMEN

The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time. Gene expression measurements can provide insights into microbiome composition and function. However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data. Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities. We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples. Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles. Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , ARN Ribosómico/genética , Bacterias/genética , ARN Ribosómico 16S/genética , Microbiota/genética , Microbioma Gastrointestinal/genética
5.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232302

RESUMEN

We assess the performance of mRNA capture sequencing to identify fusion transcripts in FFPE tissue of different sarcoma types, followed by RT-qPCR confirmation. To validate our workflow, six positive control tumors with a specific chromosomal rearrangement were analyzed using the TruSight RNA Pan-Cancer Panel. Fusion transcript calling by FusionCatcher confirmed these aberrations and enabled the identification of both fusion gene partners and breakpoints. Next, whole-transcriptome TruSeq RNA Exome sequencing was applied to 17 fusion gene-negative alveolar rhabdomyosarcoma (ARMS) or undifferentiated round cell sarcoma (URCS) tumors, for whom fluorescence in situ hybridization (FISH) did not identify the classical pathognomonic rearrangements. For six patients, a pathognomonic fusion transcript was readily detected, i.e., PAX3-FOXO1 in two ARMS patients, and EWSR1-FLI1, EWSR1-ERG, or EWSR1-NFATC2 in four URCS patients. For the 11 remaining patients, 11 newly identified fusion transcripts were confirmed by RT-qPCR, including COPS3-TOM1L2, NCOA1-DTNB, WWTR1-LINC01986, PLAA-MOB3B, AP1B1-CHEK2, and BRD4-LEUTX fusion transcripts in ARMS patients. Additionally, recurrently detected secondary fusion transcripts in patients diagnosed with EWSR1-NFATC2-positive sarcoma were confirmed (COPS4-TBC1D9, PICALM-SYTL2, SMG6-VPS53, and UBE2F-ALS2). In conclusion, this study shows that mRNA capture sequencing enhances the detection rate of pathognomonic fusions and enables the identification of novel and secondary fusion transcripts in sarcomas.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Complejo 1 de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora , Proteínas de Ciclo Celular/genética , Ácido Ditionitrobenzoico , Humanos , Hibridación Fluorescente in Situ , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , ARN , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Factores de Transcripción/genética
6.
Genome Res ; 28(2): 214-222, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29254944

RESUMEN

Upstream open reading frames (uORFs), located in transcript leaders (5' UTRs), are potent cis-acting regulators of translation and mRNA turnover. Recent genome-wide ribosome profiling studies suggest that thousands of uORFs initiate with non-AUG start codons. Although intriguing, these non-AUG uORF predictions have been made without statistical control or validation; thus, the importance of these elements remains to be demonstrated. To address this, we took a comparative genomics approach to study AUG and non-AUG uORFs. We mapped transcription leaders in multiple Saccharomyces yeast species and applied a novel machine learning algorithm (uORF-seqr) to ribosome profiling data to identify statistically significant uORFs. We found that AUG and non-AUG uORFs are both frequently found in Saccharomyces yeasts. Although most non-AUG uORFs are found in only one species, hundreds have either conserved sequence or position within Saccharomyces uORFs initiating with UUG are particularly common and are shared between species at rates similar to that of AUG uORFs. However, non-AUG uORFs are translated less efficiently than AUG-uORFs and are less subject to removal via alternative transcription initiation under normal growth conditions. These results suggest that a subset of non-AUG uORFs may play important roles in regulating gene expression.


Asunto(s)
Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Ribosomas/genética , Transcripción Genética , Regiones no Traducidas 5'/genética , Codón Iniciador/genética , Secuencia Conservada/genética , Biosíntesis de Proteínas , Análisis de Regresión , Saccharomyces cerevisiae/genética
7.
Dev Biol ; 446(2): 193-205, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30599151

RESUMEN

Proper germ cell sex determination in Caenorhabditis nematodes requires a network of RNA-binding proteins (RBPs) and their target mRNAs. In some species, changes in this network enabled limited XX spermatogenesis, and thus self-fertility. In C. elegans, one of these selfing species, the global sex-determining gene tra-2 is regulated in germ cells by a conserved RBP, GLD-1, via the 3' untranslated region (3'UTR) of its transcript. A C. elegans-specific GLD-1 cofactor, FOG-2, is also required for hermaphrodite sperm fate, but how it modifies GLD-1 function is unknown. Germline feminization in gld-1 and fog-2 null mutants has been interpreted as due to cell-autonomous elevation of TRA-2 translation. Consistent with the proposed role of FOG-2 in translational control, the abundance of nearly all GLD-1 target mRNAs (including tra-2) is unchanged in fog-2 mutants. Epitope tagging reveals abundant TRA-2 expression in somatic tissues, but an undetectably low level in wild-type germ cells. Loss of gld-1 function elevates germline TRA-2 expression to detectable levels, but loss of fog-2 function does not. A simple quantitative model of tra-2 activity constrained by these results can successfully sort genotypes into normal or feminized groups. Surprisingly, fog-2 and gld-1 activity enable the sperm fate even when GLD-1 cannot bind to the tra-2 3' UTR. This suggests the GLD-1-FOG-2 complex regulates uncharacterized sites within tra-2, or other mRNA targets. Finally, we quantify the RNA-binding capacities of dominant missense alleles of GLD-1 that act genetically as "hyper-repressors" of tra-2 activity. These variants bind RNA more weakly in vitro than does wild-type GLD-1. These results indicate that gld-1 and fog-2 regulate germline sex via multiple interactions, and that our understanding of the control and evolution of germ cell sex determination in the C. elegans hermaphrodite is far from complete.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Organismos Hermafroditas/genética , Factores de Transcripción/genética , Regiones no Traducidas 3'/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Perfilación de la Expresión Génica , Organismos Hermafroditas/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Genéticos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
8.
Nucleic Acids Res ; 44(8): 3788-800, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27034466

RESUMEN

The Musashi-2 (Msi2) RNA-binding protein maintains stem cell self-renewal and promotes oncogenesis by enhancing cell proliferation in hematopoietic and gastrointestinal tissues. However, it is unclear how Msi2 recognizes and regulates mRNA targets in vivo and whether Msi2 primarily controls cell growth in all cell types. Here we identified Msi2 targets with HITS-CLIP and revealed that Msi2 primarily recognizes mRNA 3'UTRs at sites enriched in multiple copies of UAG motifs in epithelial progenitor cells. RNA-seq and ribosome profiling demonstrated that Msi2 promotes targeted mRNA decay without affecting translation efficiency. Unexpectedly, the most prominent Msi2 targets identified are key regulators that govern cell motility with a high enrichment in focal adhesion and extracellular matrix-receptor interaction, in addition to regulators of cell growth and survival. Loss of Msi2 stimulates epithelial cell migration, increases the number of focal adhesions and also compromises cell growth. These findings provide new insights into the molecular mechanisms of Msi2's recognition and repression of targets and uncover a key function of Msi2 in restricting epithelial cell migration.


Asunto(s)
Movimiento Celular/genética , Regulación de la Expresión Génica , Queratinocitos/fisiología , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Animales , Sitios de Unión , Proliferación Celular/genética , Supervivencia Celular , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , Análisis de Secuencia de ARN , Transcriptoma
9.
Nature ; 465(7295): 182-7, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20393465

RESUMEN

We used genome-wide sequencing methods to study stimulus-dependent enhancer function in mouse cortical neurons. We identified approximately 12,000 neuronal activity-regulated enhancers that are bound by the general transcriptional co-activator CBP in an activity-dependent manner. A function of CBP at enhancers may be to recruit RNA polymerase II (RNAPII), as we also observed activity-regulated RNAPII binding to thousands of enhancers. Notably, RNAPII at enhancers transcribes bi-directionally a novel class of enhancer RNAs (eRNAs) within enhancer domains defined by the presence of histone H3 monomethylated at lysine 4. The level of eRNA expression at neuronal enhancers positively correlates with the level of messenger RNA synthesis at nearby genes, suggesting that eRNA synthesis occurs specifically at enhancers that are actively engaged in promoting mRNA synthesis. These findings reveal that a widespread mechanism of enhancer activation involves RNAPII binding and eRNA synthesis.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Neuronas/metabolismo , Transcripción Genética/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína de Unión a CREB/metabolismo , Secuencia de Consenso/genética , Proteínas del Citoesqueleto/genética , Genes Reporteros , Genes fos/genética , Histonas/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , ARN Polimerasa II/metabolismo , ARN no Traducido/biosíntesis , ARN no Traducido/genética
10.
Genome Res ; 22(1): 134-41, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22128135

RESUMEN

RNA-seq has been widely adopted as a gene-expression measurement tool due to the detail, resolution, and sensitivity of transcript characterization that the technique provides. Here we present two transposon-based methods that efficiently construct high-quality RNA-seq libraries. We first describe a method that creates RNA-seq libraries for Illumina sequencing from double-stranded cDNA with only two enzymatic reactions. We generated high-quality RNA-seq libraries from as little as 10 pg of mRNA (∼1 ng of total RNA) with this approach. We also present a strand-specific RNA-seq library construction protocol that combines transposon-based library construction with uracil DNA glycosylase and endonuclease VIII to specifically degrade the second strand constructed during cDNA synthesis. The directional RNA-seq libraries maintain the same quality as the nondirectional libraries, while showing a high degree of strand specificity, such that 99.5% of reads map to the expected genomic strand. Each transposon-based library construction method performed well when compared with standard RNA-seq library construction methods with regard to complexity of the libraries, correlation between biological replicates, and the percentage of reads that align to the genome as well as exons. Our results show that high-quality RNA-seq libraries can be constructed efficiently and in an automatable fashion using transposition technology.


Asunto(s)
Clonación Molecular/métodos , ADN Complementario/química , Biblioteca de Genes , ARN Mensajero/química , Transposasas/química , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , ADN Complementario/biosíntesis , ADN Complementario/genética , Desoxirribonucleasa (Dímero de Pirimidina)/química , Humanos , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Uracil-ADN Glicosidasa/química
11.
RNA ; 19(7): 958-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23697550

RESUMEN

Mobile group II introns encode reverse transcriptases (RTs) that function in intron mobility ("retrohoming") by a process that requires reverse transcription of a highly structured, 2-2.5-kb intron RNA with high processivity and fidelity. Although the latter properties are potentially useful for applications in cDNA synthesis and next-generation RNA sequencing (RNA-seq), group II intron RTs have been difficult to purify free of the intron RNA, and their utility as research tools has not been investigated systematically. Here, we developed general methods for the high-level expression and purification of group II intron-encoded RTs as fusion proteins with a rigidly linked, noncleavable solubility tag, and we applied them to group II intron RTs from bacterial thermophiles. We thus obtained thermostable group II intron RT fusion proteins that have higher processivity, fidelity, and thermostability than retroviral RTs, synthesize cDNAs at temperatures up to 81°C, and have significant advantages for qRT-PCR, capillary electrophoresis for RNA-structure mapping, and next-generation RNA sequencing. Further, we find that group II intron RTs differ from the retroviral enzymes in template switching with minimal base-pairing to the 3' ends of new RNA templates, making it possible to efficiently and seamlessly link adaptors containing PCR-primer binding sites to cDNA ends without an RNA ligase step. This novel template-switching activity enables facile and less biased cloning of nonpolyadenylated RNAs, such as miRNAs or protein-bound RNA fragments. Our findings demonstrate novel biochemical activities and inherent advantages of group II intron RTs for research, biotechnological, and diagnostic methods, with potentially wide applications.


Asunto(s)
ADN Complementario/biosíntesis , Intrones , ADN Polimerasa Dirigida por ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Clonación Molecular , Secuencia Conservada , ADN Complementario/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Biblioteca de Genes , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Células HeLa , Humanos , Células MCF-7 , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Estabilidad Proteica , ADN Polimerasa Dirigida por ARN/genética , Proteínas Recombinantes de Fusión/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura
12.
Genome Res ; 21(12): 2014-25, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22042643

RESUMEN

Recent RNA-sequencing studies have shown remarkable complexity in the mammalian transcriptome. The ultimate impact of this complexity on the predicted proteomic output is less well defined. We have undertaken strand-specific RNA sequencing of multiple cellular RNA fractions (>20 Gb) to uncover the transcriptional complexity of human embryonic stem cells (hESCs). We have shown that human embryonic stem (ES) cells display a high degree of transcriptional diversity, with more than half of active genes generating RNAs that differ from conventional gene models. We found evidence that more than 1000 genes express long 5' and/or extended 3'UTRs, which was confirmed by "virtual Northern" analysis. Exhaustive sequencing of the membrane-polysome and cytosolic/untranslated fractions of hESCs was used to identify RNAs encoding peptides destined for secretion and the extracellular space and to demonstrate preferential selection of transcription complexity for translation in vitro. The impact of this newly defined complexity on known gene-centric network models such as the Plurinet and the cell surface signaling machinery in human ES cells revealed a significant expansion of known transcript isoforms at play, many predicting possible alternative functions based on sequence alterations within key functional domains.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Células Madre Embrionarias/metabolismo , Modelos Genéticos , Células Madre Pluripotentes/metabolismo , Transcriptoma/fisiología , Línea Celular , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes/citología , Análisis de Secuencia de ARN/métodos
13.
Nucleic Acids Res ; 40(16): 7858-69, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22684627

RESUMEN

More than 98% of a typical vertebrate genome does not code for proteins. Although non-coding regions are sprinkled with short (<200 bp) islands of evolutionarily conserved sequences, the function of most of these unannotated conserved islands remains unknown. One possibility is that unannotated conserved islands could encode non-coding RNAs (ncRNAs); alternatively, unannotated conserved islands could serve as promoter-distal regulatory factor binding sites (RFBSs) like enhancers. Here we assess these possibilities by comparing unannotated conserved islands in the human and mouse genomes to transcribed regions and to RFBSs, relying on a detailed case study of one human and one mouse cell type. We define transcribed regions by applying a novel transcript-calling algorithm to RNA-Seq data obtained from total cellular RNA, and we define RFBSs using ChIP-Seq and DNAse-hypersensitivity assays. We find that unannotated conserved islands are four times more likely to coincide with RFBSs than with unannotated ncRNAs. Thousands of conserved RFBSs can be categorized as insulators based on the presence of CTCF or as enhancers based on the presence of p300/CBP and H3K4me1. While many unannotated conserved RFBSs are transcriptionally active to some extent, the transcripts produced tend to be unspliced, non-polyadenylated and expressed at levels 10 to 100-fold lower than annotated coding or ncRNAs. Extending these findings across multiple cell types and tissues, we propose that most conserved non-coding genomic DNA in vertebrate genomes corresponds to promoter-distal regulatory elements.


Asunto(s)
Secuencia Conservada , Elementos Reguladores de la Transcripción , Animales , Secuencia de Bases , Sitios de Unión , ADN/química , Genoma , Células HeLa , Humanos , Ratones , Regiones Promotoras Genéticas , ARN no Traducido/genética , Transcripción Genética
14.
Nat Biotechnol ; 42(2): 328-338, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37106038

RESUMEN

To gain insight into the accuracy of microbial measurements, it is important to evaluate sources of bias related to sample condition, preservative method and bioinformatic analyses. There is increasing evidence that measurement of the total count and concentration of microbes in the gut, or 'absolute abundance', provides a richer source of information than relative abundance and can correct some conclusions drawn from relative abundance data. However, little is known about how preservative choice can affect these measurements. In this study, we investigated how two common preservatives and short-term storage conditions impact relative and absolute microbial measurements. OMNIgene GUT OMR-200 yields lower metagenomic taxonomic variation between different storage temperatures, whereas Zymo DNA/RNA Shield yields lower metatranscriptomic taxonomic variation. Absolute abundance quantification reveals two different causes of variable Bacteroidetes:Firmicutes ratios across preservatives. Based on these results, we recommend OMNIgene GUT OMR-200 preservative for field studies and Zymo DNA/RNA Shield for metatranscriptomics studies, and we strongly encourage absolute quantification for microbial measurements.


Asunto(s)
Microbiota , Heces , ARN Ribosómico 16S/genética , Microbiota/genética , Metagenoma , ADN
15.
Dev Dyn ; 241(10): 1584-90, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22911638

RESUMEN

BACKGROUND: Deep sequencing of single cell-derived cDNAs offers novel insights into oncogenesis and embryogenesis. However, traditional library preparation for RNA-seq analysis requires multiple steps with consequent sample loss and stochastic variation at each step significantly affecting output. Thus, a simpler and better protocol is desirable. The recently developed hyperactive Tn5-mediated library preparation, which brings high quality libraries, is likely one of the solutions. RESULTS AND CONCLUSIONS: Here, we tested the applicability of hyperactive Tn5-mediated library preparation to deep sequencing of single cell cDNA, optimized the protocol, and compared it with the conventional method based on sonication. This new technique does not require any expensive or special equipment, which secures wider availability. A library was constructed from only 100 ng of cDNA, which enables the saving of precious specimens. Only a few steps of robust enzymatic reaction resulted in saved time, enabling more specimens to be prepared at once, and with a more reproducible size distribution among the different specimens. The obtained RNA-seq results were comparable to the conventional method. Thus, this Tn5-mediated preparation is applicable for anyone who aims to carry out deep sequencing for single cell cDNAs.


Asunto(s)
ADN Complementario/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Transposasas , Cartilla de ADN/genética , Sonicación/métodos
16.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873484

RESUMEN

Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.

17.
J Extracell Vesicles ; 12(5): e12315, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37202906

RESUMEN

The analysis of extracellular vesicles (EV) in blood samples is under intense investigation and holds the potential to deliver clinically meaningful biomarkers for health and disease. Technical variation must be minimized to confidently assess EV-associated biomarkers, but the impact of pre-analytics on EV characteristics in blood samples remains minimally explored. We present the results from the first large-scale EV Blood Benchmarking (EVBB) study in which we systematically compared 11 blood collection tubes (BCT; six preservation and five non-preservation) and three blood processing intervals (BPI; 1, 8 and 72 h) on defined performance metrics (n = 9). The EVBB study identifies a significant impact of multiple BCT and BPI on a diverse set of metrics reflecting blood sample quality, ex-vivo generation of blood-cell derived EV, EV recovery and EV-associated molecular signatures. The results assist the informed selection of the optimal BCT and BPI for EV analysis. The proposed metrics serve as a framework to guide future research on pre-analytics and further support methodological standardization of EV studies.


Asunto(s)
Vesículas Extracelulares , Benchmarking , Biomarcadores
18.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36712100

RESUMEN

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using fecal host-associated markers. While there are numerous bacterial MST markers, there are few viral markers. Here we design and test novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States of America. Next, we developed two novel probe-based RT-PCR assays based on conserved regions of the ToBRFV genome, and tested the markers’ sensitivities and specificities using human and non-human animal stool as well as wastewater. TheToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a currently used marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We applied the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, ToBRFV is a promising viral human-associated MST marker. Importance: Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of fecal host-associated MST markers. Here we design and test novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool, and highly abundant in human stool and wastewater samples.

19.
STAR Protoc ; 2(2): 100475, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33937877

RESUMEN

Comprehensive transcriptome analysis of extracellular RNA (exRNA) purified from human biofluids is challenging because of the low RNA concentration and compromised RNA integrity. Here, we describe an optimized workflow to (1) isolate exRNA from different types of biofluids and (2) to prepare messenger RNA (mRNA)-enriched sequencing libraries using complementary hybridization probes. Importantly, the workflow includes 2 sets of synthetic spike-in RNA molecules as processing controls for RNA purification and sequencing library preparation and as an alternative data normalization strategy. For complete details on the use and execution of this protocol, please refer to Hulstaert et al. (2020).


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN Mensajero/sangre , Análisis de Secuencia de ARN , Transcriptoma/genética , Espacio Extracelular/química , Espacio Extracelular/genética , Perfilación de la Expresión Génica/normas , Humanos , Reacción en Cadena de la Polimerasa , ARN Mensajero/aislamiento & purificación , Estándares de Referencia , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/normas
20.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468686

RESUMEN

Viral genome sequencing has guided our understanding of the spread and extent of genetic diversity of SARS-CoV-2 during the COVID-19 pandemic. SARS-CoV-2 viral genomes are usually sequenced from nasopharyngeal swabs of individual patients to track viral spread. Recently, RT-qPCR of municipal wastewater has been used to quantify the abundance of SARS-CoV-2 in several regions globally. However, metatranscriptomic sequencing of wastewater can be used to profile the viral genetic diversity across infected communities. Here, we sequenced RNA directly from sewage collected by municipal utility districts in the San Francisco Bay Area to generate complete and nearly complete SARS-CoV-2 genomes. The major consensus SARS-CoV-2 genotypes detected in the sewage were identical to clinical genomes from the region. Using a pipeline for single nucleotide variant calling in a metagenomic context, we characterized minor SARS-CoV-2 alleles in the wastewater and detected viral genotypes which were also found within clinical genomes throughout California. Observed wastewater variants were more similar to local California patient-derived genotypes than they were to those from other regions within the United States or globally. Additional variants detected in wastewater have only been identified in genomes from patients sampled outside California, indicating that wastewater sequencing can provide evidence for recent introductions of viral lineages before they are detected by local clinical sequencing. These results demonstrate that epidemiological surveillance through wastewater sequencing can aid in tracking exact viral strains in an epidemic context.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Aguas del Alcantarillado/virología , Secuencia de Bases , COVID-19/epidemiología , California/epidemiología , Microbiología Ambiental , Genoma Viral , Genotipo , Humanos , Metagenoma , Metagenómica , Polimorfismo de Nucleótido Simple , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA