Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 452(7187): 624-8, 2008 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-18311129

RESUMEN

Microsporidia are highly specialized obligate intracellular parasites of other eukaryotes (including humans) that show extreme reduction at the molecular, cellular and biochemical level. Although microsporidia have long been considered as early branching eukaryotes that lack mitochondria, they have recently been shown to contain a tiny mitochondrial remnant called a mitosome. The function of the mitosome is unknown, because microsporidians lack the genes for canonical mitochondrial functions, such as aerobic respiration and haem biosynthesis. However, microsporidial genomes encode several components of the mitochondrial iron-sulphur (Fe-S) cluster assembly machinery. Here we provide experimental insights into the metabolic function and localization of these proteins. We cloned, functionally characterized and localized homologues of several central mitochondrial Fe-S cluster assembly components for the microsporidians Encephalitozoon cuniculi and Trachipleistophora hominis. Several microsporidial proteins can functionally replace their yeast counterparts in Fe-S protein biogenesis. In E. cuniculi, the iron (frataxin) and sulphur (cysteine desulphurase, Nfs1) donors and the scaffold protein (Isu1) co-localize with mitochondrial Hsp70 to the mitosome, consistent with it being the functional site for Fe-S cluster biosynthesis. In T. hominis, mitochondrial Hsp70 and the essential sulphur donor (Nfs1) are still in the mitosome, but surprisingly the main pools of Isu1 and frataxin are cytosolic, creating a conundrum of how these key components of Fe-S cluster biosynthesis coordinate their function. Together, our studies identify the essential biosynthetic process of Fe-S protein assembly as a key function of microsporidian mitosomes.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Microsporidios/metabolismo , Animales , Línea Celular , Clonación Molecular , Proteínas Fúngicas/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Microsporidios/citología , Microsporidios/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Conejos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
2.
Mol Membr Biol ; 23(2): 173-84, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16754360

RESUMEN

The ATP binding cassette (ABC) transporter Atm1p of the mitochondrial inner membrane performs crucial roles in both the biogenesis of cytosolic/nuclear iron-sulfur proteins and cellular iron homeostasis. Since the function of the mitochondrial iron-sulfur cluster (ISC) assembly machinery is also required for these two processes, Atm1p is thought to translocate a still unknown product of this pathway to the cytosol. Here, we provide a detailed in vitro characterization of Atm1p in order to better understand its function. Atm1p was purified using an expression system in E. coli. The detergent-solubilised protein exhibits a stable ATPase activity. Reconstitution of Atm1p into proteoliposomes allowed us to determine the biochemical characteristics of the ATPase such as: (i) the strong inhibition by the transition state analogue vanadate, (ii) a Km value of 0.1 mM, and (iii) a turnover number of 127 min-1. The ATPase activity of ABC transporters is generally stimulated by their specific substrate. We used this property to define the chemical properties of the substrate transported by Atm1p. ATPase hydrolysis by Atm1p-containing proteoliposomes was specifically increased 3-5-fold by thiol-containing compounds, in particular by micromolar concentrations of cysteine thiol groups in peptides, even though Atm1p is not a general peptide transporter such as yeast Mdl1p or mammalian TAP which share sequence similarity with Atm1p. We speculate that the physiological substrate of Atm1p may contain multiple sulfhydryl groups in a peptidic environment.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfatasas/química , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae/fisiología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Citosol/metabolismo , Detergentes/química , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/química , Cinética , Liposomas/química , Mitocondrias/metabolismo , Proteolípidos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Compuestos de Sulfhidrilo/química , Factores de Tiempo
3.
J Biol Chem ; 279(39): 40927-37, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15263010

RESUMEN

RsbU is a positive regulator of the activity of sigmaB, the general stress-response sigma factor of Gram+ microorganisms. The N-terminal domain of this protein has no significant sequence homology with proteins of known function, whereas the C-terminal domain is similar to the catalytic domains of PP2C-type phosphatases. The phosphatase activity of RsbU is stimulated greatly during the response to stress by associating with a kinase, RsbT. This association leads to the induction of sigmaB activity. Here we present data on the activation process and demonstrate in vivo that truncations in the N-terminal region of RsbU are deleterious for the activation of RsbU. This conclusion is supported by comparisons of the phosphatase activities of full-length and a truncated form of RsbU in vitro. Our determination of the crystal structure of the N-terminal domain of RsbU from Bacillus subtilis reveals structural similarities to the regulatory domains from ubiquitous protein phosphatases and a conserved domain of sigma-factors, illuminating the activation processes of phosphatases and the evolution of "partner switching." Finally, the molecular basis of kinase recruitment by the RsbU phosphatase is discussed by comparing RsbU sequences from bacteria that either possess or lack RsbT.


Asunto(s)
Proteínas Bacterianas/química , Fosfoproteínas Fosfatasas/química , Monoéster Fosfórico Hidrolasas/química , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/fisiología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Enlace de Hidrógeno , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Fenotipo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA