RESUMEN
Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses-often de novo-contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease.
Asunto(s)
Variaciones en el Número de Copia de ADN , Sistema Nervioso Entérico/crecimiento & desarrollo , Redes Reguladoras de Genes , Enfermedad de Hirschsprung/genética , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/química , Epistasis Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Ratones , Pez CebraRESUMEN
Microglia are CNS-resident macrophages that scavenge debris and regulate immune responses. Proliferation and development of macrophages, including microglia, requires Colony Stimulating Factor 1 Receptor (CSF1R), a gene previously associated with a dominant adult-onset neurological condition (adult-onset leukoencephalopathy with axonal spheroids and pigmented glia). Here, we report two unrelated individuals with homozygous CSF1R mutations whose presentation was distinct from ALSP. Post-mortem examination of an individual with a homozygous splice mutation (c.1754-1G>C) demonstrated several structural brain anomalies, including agenesis of corpus callosum. Immunostaining demonstrated almost complete absence of microglia within this brain, suggesting that it developed in the absence of microglia. The second individual had a homozygous missense mutation (c.1929C>A [p.His643Gln]) and presented with developmental delay and epilepsy in childhood. We analyzed a zebrafish model (csf1rDM) lacking Csf1r function and found that their brains also lacked microglia and had reduced levels of CUX1, a neuronal transcription factor. CUX1+ neurons were also reduced in sections of homozygous CSF1R mutant human brain, identifying an evolutionarily conserved role for CSF1R signaling in production or maintenance of CUX1+ neurons. Since a large fraction of CUX1+ neurons project callosal axons, we speculate that microglia deficiency may contribute to agenesis of the corpus callosum via reduction in CUX1+ neurons. Our results suggest that CSF1R is required for human brain development and establish the csf1rDM fish as a model for microgliopathies. In addition, our results exemplify an under-recognized form of phenotypic expansion, in which genes associated with well-recognized, dominant conditions produce different phenotypes when biallelically mutated.
Asunto(s)
Anomalías Congénitas/etiología , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Microglía/patología , Mutación , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Adulto , Animales , Niño , Anomalías Congénitas/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homocigoto , Humanos , Lactante , Recién Nacido , Microglía/metabolismo , Linaje , Fenotipo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adulto Joven , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Microglia are the resident macrophages of the brain. Over the past decade, our understanding of the function of these cells has significantly improved. Microglia do not only play important roles in the healthy brain but are involved in almost every brain pathology. Gene expression profiling allowed to distinguish microglia from other macrophages and revealed that the full microglia signature can only be observed in vivo. Thus, animal models are irreplaceable to understand the function of these cells. One of the popular models to study microglia is the zebrafish larva. Due to their optical transparency and genetic accessibility, zebrafish larvae have been employed to understand a variety of microglia functions in the living brain. Here, we performed RNA sequencing of larval zebrafish microglia at different developmental time points: 3, 5, and 7 days post fertilization (dpf). Our analysis reveals that larval zebrafish microglia rapidly acquire the core microglia signature and many typical microglia genes are expressed from 3 dpf onwards. The majority of changes in gene expression happened between 3 and 5 dpf, suggesting that differentiation mainly takes place during these days. Furthermore, we compared the larval microglia transcriptome to published data sets of adult zebrafish microglia, mouse microglia, and human microglia. Larval microglia shared a significant number of expressed genes with their adult counterparts in zebrafish as well as with mouse and human microglia. In conclusion, our results show that larval zebrafish microglia mature rapidly and express the core microglia gene signature that seems to be conserved across species.
Asunto(s)
Perfilación de la Expresión Génica , Macrófagos/metabolismo , Microglía/metabolismo , Transcriptoma/genética , Animales , Encéfalo/patología , Larva/genética , Análisis por Micromatrices/métodos , Análisis de Secuencia de ARN/métodos , Pez CebraRESUMEN
Sphingolipidoses are severe, mostly infantile lysosomal storage disorders (LSDs) caused by defective glycosphingolipid degradation. Two of these sphingolipidoses, Tay Sachs and Sandhoff diseases, are caused by ß-Hexosaminidase (HEXB) enzyme deficiency, resulting in ganglioside (GM2) accumulation and neuronal loss. The precise sequence of cellular events preceding, and leading to, neuropathology remains unclear, but likely involves inflammation and lysosomal accumulation of GM2 in multiple cell types. We aimed to determine the consequences of Hexb activity loss for different brain cell types using zebrafish. Hexb deficient zebrafish (hexb-/- ) showed lysosomal abnormalities already early in development both in radial glia, which are the neuronal and glial progenitors, and in microglia. Additionally, at 5 days postfertilization, hexb-/- zebrafish showed reduced locomotor activity. Although specific oligosaccharides accumulate in the adult brain, hexb-/- ) zebrafish are viable and apparently resistant to Hexb deficiency. In all, we identified cellular consequences of loss of Hexb enzyme activity during embryonic brain development, showing early effects on glia, which possibly underlie the behavioral aberrations. Hereby, we identified clues into the contribution of non-neuronal lysosomal abnormalities in LSDs affecting the brain and provide a tool to further study what underlies the relative resistance to Hexb deficiency in vivo.
Asunto(s)
Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Lisosomas/enzimología , Neuroglía/enzimología , Cadena beta de beta-Hexosaminidasa/genética , Animales , Animales Modificados Genéticamente , Apoptosis/fisiología , Encéfalo/patología , Modelos Animales de Enfermedad , Lisosomas/patología , Actividad Motora/fisiología , Neuroglía/patología , Esfingolipidosis/enzimología , Pez CebraRESUMEN
Microglia are brain resident macrophages important for brain development, connectivity, homeostasis and disease. However, it is still largely unclear how microglia functions and their identity are regulated at the molecular level. Although recent transcriptomic studies have identified genes specifically expressed in microglia, the function of most of these genes in microglia is still unknown. Here, we performed RNA sequencing on microglia acutely isolated from healthy and neurodegenerative zebrafish brains. We found that a large fraction of the mouse microglial signature is conserved in the zebrafish, corroborating the use of zebrafish to help understand microglial genetics in mammals in addition to studying basic microglia biology. Second, our transcriptome analysis of microglia following neuronal ablation suggested primarily a proliferative response of microglia, which we confirmed by immunohistochemistry and in vivo imaging. Together with the recent improvements in genome editing technology in zebrafish, these data offer opportunities to facilitate functional genetic research on microglia in vivo in the healthy as well as in the diseased brain. GLIA 2016;65:138-149.
Asunto(s)
Microglía/citología , Microglía/metabolismo , Transcriptoma/genética , Animales , Encéfalo/citología , Encéfalo/metabolismo , Muerte Celular , Perfilación de la Expresión Génica/métodos , Inmunohistoquímica/métodos , Macrófagos/citología , Macrófagos/metabolismo , Análisis de Secuencia de ARN/métodos , Pez CebraRESUMEN
The gastrointestinal (GI) tract performs a range of functions essential for life. Congenital defects affecting its development can lead to enteric neuromuscular disorders, highlighting the importance to understand the molecular mechanisms underlying GI development and dysfunction. In this study, we present a method for gut isolation from zebrafish larvae at 5 days post fertilization to obtain live, viable cells which can be used for single-cell RNA sequencing (scRNA-seq) analysis. This protocol is based on the manual dissection of the zebrafish intestine, followed by enzymatic dissociation with papain. Subsequently, cells are submitted to fluorescence-activated cell sorting, and viable cells are collected for scRNA-seq. With this method, we were able to successfully identify different intestinal cell types, including epithelial, stromal, blood, muscle, and immune cells, as well as enteric neurons and glia. Therefore, we consider it to be a valuable resource for studying the composition of the GI tract in health and disease, using the zebrafish.
Asunto(s)
Tracto Gastrointestinal , Pez Cebra , Animales , Pez Cebra/genética , Larva/genética , Tracto Gastrointestinal/fisiología , Intestinos , Análisis de Secuencia de ARNRESUMEN
The enteric nervous system (ENS) regulates many gastrointestinal functions including peristalsis, immune regulation and uptake of nutrients. Defects in the ENS can lead to severe enteric neuropathies such as Hirschsprung disease (HSCR). Zebrafish have proven to be fruitful in the identification of genes involved in ENS development and HSCR pathogenesis. However, composition and specification of enteric neurons and glial subtypes at larval stages, remains mainly unexplored. Here, we performed single cell RNA sequencing of zebrafish ENS at 5 days post-fertilization. We identified vagal neural crest progenitors, Schwann cell precursors, and four clusters of differentiated neurons. In addition, a previously unrecognized elavl3+/phox2bb-population of neurons and cx43+/phox2bb-enteric glia was found. Pseudotime analysis supported binary neurogenic branching of ENS differentiation, driven by a notch-responsive state. Taken together, we provide new insights on ENS development and specification, proving that the zebrafish is a valuable model for the study of congenital enteric neuropathies.
RESUMEN
Background: Pediatric Intestinal Pseudo-obstruction (PIPO) is a congenital enteric disorder characterized by severe gastrointestinal (GI) dysmotility, without mechanical obstruction. Although several genes have been described to cause this disease, most patients do not receive a genetic diagnosis. Here, we aim to identify the genetic cause of PIPO in a patient diagnosed with severe intestinal dysmotility shortly after birth. Methods: Whole exome sequencing (WES) was performed in the patient and unaffected parents, in a diagnostic setting. After identification of the potential disease-causing variant, its functional consequences were determined in vitro and in vivo. For this, expression constructs with and without the causing variant, were overexpressed in HEK293 cells. To investigate the role of the candidate gene in GI development and function, a zebrafish model was generated where its expression was disrupted using CRISPR/Cas9 editing. Results: WES analysis identified a de novo heterozygous deletion in TFAP2B (NM_003221.4:c.602-5_606delTCTAGTTCCA), classified as a variant of unknown significance. In vitro studies showed that this deletion affects RNA splicing and results in loss of exon 4, leading to the appearance of a premature stop codon and absence of TFAP2B protein. Disruption of tfap2b in zebrafish led to decreased enteric neuronal numbers and delayed transit time. However, no defects in neuronal differentiation were detected. tfap2b crispants also showed decreased levels of ednrbb mRNA, a downstream target of tfap2b. Conclusion: We showed that TFAP2B haploinsufficiency leads to reduced neuronal numbers and GI dysmotility, suggesting for the first time, that this gene is involved in PIPO pathogenesis.
RESUMEN
The Enteric Nervous System (ENS) is a large network of enteric neurons and glia that regulates various processes in the gastrointestinal tract including motility, local blood flow, mucosal transport and secretion. The ENS is derived from stem cells coming from the neural crest that migrate into and along the primitive gut. Defects in ENS establishment cause enteric neuropathies, including Hirschsprung disease (HSCR), which is characterized by an absence of enteric neural crest cells in the distal part of the colon. In this review, we discuss the use of zebrafish as a model organism to study the development of the ENS. The accessibility of the rapidly developing gut in zebrafish embryos and larvae, enables in vivo visualization of ENS development, peristalsis and gut transit. These properties make the zebrafish a highly suitable model to bring new insights into ENS development, as well as in HSCR pathogenesis. Zebrafish have already proven fruitful in studying ENS functionality and in the validation of novel HSCR risk genes. With the rapid advancements in gene editing techniques and their unique properties, research using zebrafish as a disease model, will further increase our understanding on the genetics underlying HSCR, as well as possible treatment options for this disease.
RESUMEN
BACKGROUND: Hirschsprung's disease (HSCR) is a congenital gastrointestinal disorder, characterized by enteric ganglia absence in part or entire of the colon, due to abnormal colonization and migration of enteric neural crest cells (ENCCs) during development. Currently, besides surgery which is the main therapy for HSCR, the potential of stem cell-based transplantation was investigated as an alternative option. Although promising, it has limitations, including poor survival, differentiation, and migration of the grafted cells. We hypothesized that modulation of extracellular factors during transplantation could promote ENCCs proliferation and migration, leading to increased transplantation efficiency. Considering that the RhoA/ROCK pathway is highly involved in cytoskeletal dynamics and neurite growth, our study explored the effect of inhibition of this pathway to improve the success of ENCCs transplantation. METHODS: Enteric neural crest cells were isolated from rat embryos and labeled with a GFP-tag. Cell viability, apoptosis, differentiation, and migration assays were performed with and without RhoA/ROCK inhibition. Labeled ENCCs were transplanted into the muscle layer of an induced hypoganglionic rat model followed by intraperitoneal injections of ROCK inhibitor. The transplanted segments were collected 3 weeks after for histological analysis. KEY RESULTS: Our results showed that inhibition of ROCK increased viable cell number, differentiation, and migration of ENCCs in vitro. Moreover, transplantation of labeled ENCCs into the hypoganglionic model showed enhanced distribution of grafted ENCCs, upon treatment with ROCK inhibitor. CONCLUSIONS AND INFERENCES: ROCK inhibitors influence ENCCs growth and migration in vitro and in vivo, and should be considered to improve the efficiency of ENCCs transplantation.
Asunto(s)
Sistema Nervioso Entérico/metabolismo , Enfermedad de Hirschsprung/metabolismo , Cresta Neural/trasplante , Transducción de Señal/fisiología , Quinasas Asociadas a rho/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Enfermedad de Hirschsprung/patología , Ratas , Ratas Sprague-DawleyRESUMEN
Macrophages derive from multiple sources of hematopoietic progenitors. Most macrophages require colony-stimulating factor 1 receptor (CSF1R), but some macrophages persist in the absence of CSF1R. Here, we analyzed mpeg1:GFP-expressing macrophages in csf1r-deficient zebrafish and report that embryonic macrophages emerge followed by their developmental arrest. In larvae, mpeg1+ cell numbers then increased showing two distinct types in the skin: branched, putative Langerhans cells, and amoeboid cells. In contrast, although numbers also increased in csf1r-mutants, exclusively amoeboid mpeg1+ cells were present, which we showed by genetic lineage tracing to have a non-hematopoietic origin. They expressed macrophage-associated genes, but also showed decreased phagocytic gene expression and increased epithelial-associated gene expression, characteristic of metaphocytes, recently discovered ectoderm-derived cells. We further demonstrated that juvenile csf1r-deficient zebrafish exhibit systemic macrophage depletion. Thus, csf1r deficiency disrupts embryonic to adult macrophage development. Zebrafish deficient for csf1r are viable and permit analyzing the consequences of macrophage loss throughout life.
Immune cells called macrophages are found in all organs in the body. These cells are highly effective at eating and digesting large particles including dead cells and debris, and microorganisms such as bacteria. Macrophages are also instrumental in shaping developing organs and repairing tissues during life. Macrophages were, until recently, thought to be constantly replenished from cells circulating in the bloodstream. However, it turns out that separate populations of macrophages become established in most tissues during embryonic development and are maintained throughout life without further input. Previous studies of zebrafish, rodents and humans have shown that, when a gene called CSF1R is non-functional, macrophages are absent from many organs including the brain. However, some tissue-specific macrophages still persist, and it was not clear why these cells do not rely on the CSF1R gene while others do. Kuil et al. set out to decipher the precise requirement for the CSF1R gene in macrophage development in living zebrafish. The experiments used zebrafish that make a green fluorescent protein in their macrophages. As these fish are transparent, this meant that Kuil et al. could observe the cells within the living fish and isolate them to determine which genes are switched on and off. This approach revealed that zebrafish with a mutated version of the CSF1R gene make macrophages as embryos but that these cells then fail to multiply and migrate into the developing organs. This results in fewer macrophages in the zebrafish's tissues, and an absence of these cells in the brain. Kuil et al. went on to show that new macrophages did emerge in zebrafish that were about two to three weeks old. However, unexpectedly, these new cells were not regular macrophages. Instead, they were a new recently identified cell-type called metaphocytes, which share similarities with macrophages but have a completely different origin, move faster and do not eat particles. Zebrafish lacking the CSF1R gene thus lose nearly all their macrophages but retain metaphocytes. These macrophage-free mutant zebrafish constitute an unprecedented tool for further studies looking to discriminate the different roles of macrophages and metaphocytes.
Asunto(s)
Macrófagos/fisiología , Microglía/fisiología , Proteínas Tirosina Quinasas/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Proliferación Celular , Perfilación de la Expresión Génica , Macrófagos/metabolismo , Microglía/metabolismo , Proteínas Tirosina Quinasas Receptoras , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismoRESUMEN
Microglia are brain-resident macrophages, which have specialized functions important in brain development and in disease. They colonize the brain in early embryonic stages, but few factors that drive the migration of yolk sac macrophages (YSMs) into the embryonic brain, or regulate their acquisition of specialized properties, are currently known. Here, we present a CRISPR/Cas9-based in vivo reverse genetic screening pipeline to identify new microglia regulators using zebrafish. Zebrafish larvae are particularly suitable due to their external development, transparency and conserved microglia features. We targeted putative microglia regulators, by Cas9/gRNA complex injections, followed by Neutral-Red-based visualization of microglia. Microglia were quantified automatically in 3-day-old larvae using a software tool we called SpotNGlia. We identified that loss of zebrafish colony-stimulating factor 1 receptor (Csf1r) ligand, Il34, caused reduced microglia numbers. Previous studies on the role of IL34 in microglia development in vivo were ambiguous. Our data, and a concurrent paper, show that, in zebrafish, il34 is required during the earliest seeding of the brain by microglia. Our data also indicate that Il34 is required for YSM distribution to other organs. Disruption of the other Csf1r ligand, Csf1, did not reduce microglia numbers in mutants, whereas overexpression increased the number of microglia. This shows that Csf1 can influence microglia numbers, but might not be essential for the early seeding of the brain. In all, we identified il34 as a modifier of microglia colonization, by affecting distribution of YSMs to target organs, validating our reverse genetic screening pipeline in zebrafish.This article has an associated First Person interview with the joint first authors of the paper.
Asunto(s)
Encéfalo/metabolismo , Pruebas Genéticas , Interleucinas/metabolismo , Macrófagos/metabolismo , Genética Inversa , Saco Vitelino/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Encéfalo/crecimiento & desarrollo , Sistemas CRISPR-Cas/genética , Recuento de Células , Proliferación Celular , Interleucinas/genética , Interleucinas/fisiología , Microglía/metabolismo , Mutación/genética , Proteínas de Pez Cebra/genéticaRESUMEN
Microglia are brain-resident macrophages with trophic and phagocytic functions. Dominant loss-of-function mutations in a key microglia regulator, colony-stimulating factor 1 receptor (CSF1R), cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a progressive white matter disorder. Because it remains unclear precisely how CSF1R mutations affect microglia, we generated an allelic series of csf1r mutants in zebrafish to identify csf1r-dependent microglia changes. We found that csf1r mutations led to aberrant microglia density and distribution and regional loss of microglia. The remaining microglia still had a microglia-specific gene expression signature, indicating that they had differentiated normally. Strikingly, we also observed lower microglia numbers and widespread microglia depletion in postmortem brain tissue of ALSP patients. Both in zebrafish and in human disease, local microglia loss also presented in regions without obvious pathology. Together, this implies that CSF1R mainly regulates microglia density and that early loss of microglia may contribute to ALSP pathogenesis.
Asunto(s)
Diferenciación Celular , Leucoencefalopatías/metabolismo , Microglía/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Humanos , Leucoencefalopatías/patología , Microglía/citología , Mutación , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Pez Cebra , Proteínas de Pez Cebra/genéticaRESUMEN
In neurodegenerative diseases activation of immune cells is thought to play a major role. Microglia are the main immune cells of the central nervous system. When encountering disease related stimuli microglia adopt an activated phenotype that typically includes a rounded morphology. The exact role of microglia or other potentially infiltrating myeloid cells in different brain diseases is not fully understood. In this chapter we present techniques in zebrafish to induce degeneration of neurons, to activate the microglia, and to study activation phenotypes by immunohistochemistry and in vivo by fluorescence microscopic imaging.
Asunto(s)
Apoptosis/genética , Encéfalo/ultraestructura , Larva/ultraestructura , Microglía/ultraestructura , Neuronas/ultraestructura , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunohistoquímica/métodos , Larva/genética , Larva/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microglía/metabolismo , Microscopía Fluorescente/métodos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Fagocitosis , Transición de Fase , Sefarosa/química , Pez Cebra/genética , Pez Cebra/metabolismo , Proteína Fluorescente RojaRESUMEN
Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity.
Asunto(s)
Hipocampo/patología , Hipocampo/fisiopatología , Memoria , Plasticidad Neuronal , Receptores de Mineralocorticoides/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/fisiopatología , Animales , Conducta Animal , Condicionamiento Clásico , Miedo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis , Sistemas Neurosecretores/metabolismoRESUMEN
Mineralocorticoid receptors (MRs) have been implicated in behavioral adaptation and learning and memory. Since-at least in humans-MR function seems to be sex-dependent, we examined the behavioral relevance of MR in female mice exhibiting transgenic MR overexpression in the forebrain. Transgenic MR overexpression did not affect contextual fear memory or cued fear learning and memory. Moreover, MR overexpressing and control mice discriminated equally well between fear responses in a combined cue and context fear conditioning paradigm. Also context-memory in an object recognition task was unaffected in MR overexpressing mice. We conclude that MR overexpression in female animals does not affect fear conditioned responses and object recognition memory.