Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nucleic Acids Res ; 51(18): 10011-10025, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615563

RESUMEN

Eukaryotic transcription is dependent on specific histone modifications. Their recognition by chromatin readers triggers complex processes relying on the coordinated association of transcription regulatory factors. Although various modification states of a particular histone residue often lead to differential outcomes, it is not entirely clear how they are discriminated. Moreover, the contribution of intrinsically disordered regions outside of the specialized reader domains to nucleosome binding remains unexplored. Here, we report the structures of a PWWP domain from transcriptional coactivator LEDGF in complex with the H3K36 di- and trimethylated nucleosome, indicating that both methylation marks are recognized by PWWP in a highly conserved manner. We identify a unique secondary interaction site for the PWWP domain at the interface between the acidic patch and nucleosomal DNA that might contribute to an H3K36-methylation independent role of LEDGF. We reveal DNA interacting motifs in the intrinsically disordered region of LEDGF that discriminate between the intra- or extranucleosomal DNA but remain dynamic in the context of dinucleosomes. The interplay between the LEDGF H3K36-methylation reader and protein binding module mediated by multivalent interactions of the intrinsically disordered linker with chromatin might help direct the elongation machinery to the vicinity of RNA polymerase II, thereby facilitating productive elongation.

2.
Anal Chem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967040

RESUMEN

Fast Photochemical Oxidation of Proteins (FPOP) is a protein footprinting method utilizing hydroxyl radicals to provide valuable information on the solvent-accessible surface area. The extensive number of oxidative modifications that are created by FPOP is both advantageous, leading to great spatial resolution, and challenging, increasing the complexity of data processing. The precise localization of the modification together with the appropriate reproducibility is crucial to obtain relevant structural information. In this paper, we propose a novel approach combining validated spectral libraries together with utilizing DIA data. First, the DDA data searched by FragPipe are subsequently validated using Skyline software to form a spectral library. This library is then matched against the DIA data to filter out nonrepresentative IDs. In comparison with FPOP data processing using only a search engine followed by generally applied filtration steps, the manually validated spectral library offers higher confidence in identifications and increased spatial resolution. Furthermore, the reproducibility of quantification was compared for DIA, DDA, and MS-only acquisition modes on timsTOF SCP. Comparison of coefficients of variation (CV) showed that the DIA and MS acquisition modes exhibit significantly better reproducibility in quantification (CV medians 0.1233 and 0.1494, respectively) compared to the DDA mode (CV median 0.2104).

3.
Anal Chem ; 96(19): 7386-7393, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698660

RESUMEN

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Asunto(s)
Mapeo Epitopo , Receptor ErbB-2 , Trastuzumab , Humanos , Mapeo Epitopo/métodos , Receptor ErbB-2/química , Receptor ErbB-2/inmunología , Trastuzumab/química , Alquilación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Halogenación , Huella de Proteína/métodos , Complejo Antígeno-Anticuerpo/química
4.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396918

RESUMEN

The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.


Asunto(s)
Ixodes , Saliva , Animales , Humanos , Saliva/metabolismo , Cisteína , Glicosaminoglicanos , Catepsinas/metabolismo , Ixodes/metabolismo , Espectroscopía de Resonancia Magnética
5.
Anal Chem ; 94(28): 9993-10002, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35797180

RESUMEN

Fast photochemical oxidation of proteins (FPOP) footprinting is a structural mass spectrometry method that maps proteins by fast and irreversible chemical reactions. The position of oxidative modification reflects solvent accessibility and site reactivity and thus provides information about protein conformation, structural dynamics, and interactions. Bottom-up mass spectrometry is an established standard method to analyze FPOP samples. In the bottom-up approach, all forms of the protein are digested together by a protease of choice, which results in a mixture of peptides from various subpopulations of proteins with varying degrees of photochemical oxidation. Here, we investigate the possibility to analyze a specifically selected population of only singly oxidized proteins. This requires utilization of more specific top-down mass spectrometry approaches. The key element of any top-down experiment is the selection of a suitable method of ion isolation, excitation, and fragmentation. Here, we employ and compare collision-induced dissociation, electron-transfer dissociation, and electron-capture dissociation combined with multi-continuous accumulation of selected ions. A singly oxidized subpopulation of FPOP-labeled ubiquitin was used to optimize the method. The top-down approach in FPOP is limited to smaller proteins, but its usefulness was demonstrated by using it to visualize structural changes induced by co-factor removal from the holo/apo myoglobin system. The top-down data were compared with the literature and with the bottom-up data set obtained on the same samples. The top-down results were found to be in good agreement, which indicates that monitoring a singly oxidized FPOP ion population by the top-down approach is a functional workflow for oxidative protein footprinting.


Asunto(s)
Electrones , Huella de Proteína , Mioglobina/química , Estrés Oxidativo , Conformación Proteica , Huella de Proteína/métodos
6.
Anal Chem ; 94(7): 3203-3210, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35134296

RESUMEN

A combination of covalent labeling techniques and mass spectrometry (MS) is currently a progressive approach for deriving insights related to the mapping of protein surfaces or protein-ligand interactions. In this study, we mapped an interaction interface between the DNA binding domain (DBD) of FOXO4 protein and the DNA binding element (DAF16) using fast photochemical oxidation of proteins (FPOP). Residues involved in protein-DNA interaction were identified using the bottom-up approach. To confirm the findings and avoid a misinterpretation of the obtained data, caused by possible multiple radical oxidations leading to the protein surface alteration and oxidation of deeply buried amino acid residues, a top-down approach was employed for the first time in FPOP analysis. An isolation of singly oxidized ions enabled their gas-phase separation from multiply oxidized species followed by CID and ECD fragmentation. Application of both fragmentation techniques allowed generation of complementary fragment sets, out of which the regions shielded in the presence of DNA were deduced. The findings obtained by bottom-up and top-down approaches were highly consistent. Finally, FPOP results were compared with those of the HDX study of the FOXO4-DBD·DAF16 complex. No contradictions were found between the methods. Moreover, their combination provides complementary information related to the structure and dynamics of the protein-DNA complex. Data are available via ProteomeXchange with identifier PXD027624.


Asunto(s)
Aminoácidos , ADN , Espectrometría de Masas/métodos , Oxidación-Reducción , Factores de Transcripción
7.
J Proteome Res ; 20(4): 2021-2027, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657806

RESUMEN

Chemical cross-linking mass spectrometry has become a popular tool in structural biology. Although several algorithms exist that efficiently analyze data-dependent mass spectrometric data, the algorithm to identify and quantify intermolecular cross-links located at the interaction interface of homodimer molecules was missing. The algorithm in LinX utilizes high mass accuracy for ion identification. In contrast with standard data-dependent analysis, LinX enables the elucidation of cross-linked peptides originating from the interaction interface of homodimers labeled by 14N/15N, including their ratio or cross-links from protein-nucleic acid complexes. The software is written in Java language, and its source code and a detailed user's guide are freely available at https://github.com/KukackaZ/LinX or https://ms-utils.org/LinX. Data are accessible via the ProteomeXchange server with the data set identifier PXD023522.


Asunto(s)
Péptidos , Programas Informáticos , Algoritmos , Reactivos de Enlaces Cruzados , Espectrometría de Masas
8.
J Am Chem Soc ; 143(49): 20670-20679, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34846870

RESUMEN

Covalent labeling of proteins in combination with mass spectrometry has been established as a complementary technique to classical structural methods, such as X-ray, NMR, or cryogenic electron microscopy (Cryo-EM), used for protein structure determination. Although the current covalent labeling techniques enable the protein solvent accessible areas with sufficient spatial resolution to be monitored, there is still high demand for alternative, less complicated, and inexpensive approaches. Here, we introduce a new covalent labeling method based on fast fluoroalkylation of proteins (FFAP). FFAP uses fluoroalkyl radicals formed by reductive decomposition of Togni reagents with ascorbic acid to label proteins on a time scale of seconds. The feasibility of FFAP to effectively label proteins was demonstrated by monitoring the differential amino acids modification of native horse heart apomyoglobin/holomyoglobin and the human haptoglobin-hemoglobin complex. The obtained data confirmed the Togni reagent-mediated FFAP is an advantageous alternative method for covalent labeling in applications such as protein footprinting and epitope mapping of proteins (and their complexes) in general. Data are accessible via the ProteomeXchange server with the data set identifier PXD027310.


Asunto(s)
Proteínas de Escherichia coli/química , Haptoglobinas/química , Hemoglobinas/química , Hidrocarburos Fluorados/química , Mioglobina/química , Proteínas Represoras/química , Alquilación , Animales , Escherichia coli/química , Caballos , Humanos , Espectrometría de Masas/métodos , Conformación Proteica
9.
Nucleic Acids Res ; 47(15): 8282-8300, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31291455

RESUMEN

eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Factor 5 Eucariótico de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión/genética , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/genética , Factor 5 Eucariótico de Iniciación/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Anal Chem ; 91(11): 6953-6961, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31045356

RESUMEN

The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Albúmina Sérica Bovina/análisis , Albúmina Sérica Bovina/química , Laboratorios , Espectrometría de Masas/instrumentación , Reproducibilidad de los Resultados
11.
Chemistry ; 25(69): 15779-15785, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31523878

RESUMEN

A series of fluoroalkylated cyclic λ3 -iodanes and their hydrochloride salts was prepared and used in a combination with sodium ascorbate in buffer or aqueous methanol mixtures for radical fluoroalkylation of a range of substituted indoles, pyrroles, tryptophan or its derivatives, and Trp residues in peptides. As demonstrated on several peptides, the aromatic amino acid residues of Trp, Tyr, Phe, and His are targeted with high selectivity to Trp. The functionalization method is biocompatible, mild, rapid, and transition-metal-free. The proteins myoglobin, ubiquitin, and human carbonic anhydrase I were also successfully functionalized.


Asunto(s)
Aminoácidos Aromáticos/química , Indoles/química , Péptidos/química , Proteínas/química , Pirroles/química , Alquilación , Aminoácidos Aromáticos/síntesis química , Radicales Libres/síntesis química , Radicales Libres/química , Halogenación , Humanos , Indoles/síntesis química , Modelos Moleculares , Péptidos/síntesis química , Proteínas/síntesis química , Pirroles/síntesis química
12.
Anal Bioanal Chem ; 411(2): 439-448, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30498982

RESUMEN

Tuberculosis (TB) is the first cause of death from infectious diseases worldwide. Only a single anti-TB vaccine is currently available for clinical use, but its efficacy is not achieved with certainty. The aim of this work is to provide a basis for the rational design of a neo-glycoconjugate vaccine against TB. Structural characterization of recombinant antigenic proteins from Mycobacterium tuberculosis (MTB) Ag85B (rAg85B, variants, and semi-synthetic glycoconjugates) was initially carried out. Identification of antibody epitope analyses by proteolytic affinity-mass spectrometry and surface plasmon resonance (SPR) biosensor analyses were performed in order to qualitatively identify and quantitatively characterize interaction structures of the antigens with antibodies from different sources. A commercial monoclonal antibody and polyclonal antibodies from different sources (patients with active TB, vaccinated individuals, and a healthy control) were employed to analyze antigen-antibody interactions. These combined approaches provided the identification of different assembled epitope regions on the recombinant MTB antigens, their affinity binding constants in the interactions with specific antibodies, and revealed the importance of protection from excessive glycosylation. The identified epitope peptides should constitute a suitable basis for the design of new specific target vaccines. Graphical abstract ᅟ.


Asunto(s)
Anticuerpos Antibacterianos , Afinidad de Anticuerpos , Antígenos Bacterianos , Epítopos/química , Espectrometría de Masas/métodos , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Técnicas Biosensibles , Modelos Moleculares , Conformación Proteica , Proteolisis
13.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995786

RESUMEN

Mouse activating Nkrp1 proteins are commonly described as type II transmembrane receptors with disulfide-linked homodimeric structure. Their function and the manner in which Nkrp1 proteins of mouse strain (C57BL/6) oligomerize are still poorly understood. To assess the oligomerization state of Nkrp1 proteins, mouse activating EGFP-Nkrp1s were expressed in mammalian lymphoid cells and their oligomerization evaluated by Förster resonance energy transfer (FRET). Alternatively, Nkrp1s oligomers were detected by Western blotting to specify the ratio between monomeric and dimeric forms. We also performed structural characterization of recombinant ectodomains of activating Nkrp1 receptors. Nkrp1 isoforms c1, c2 and f were expressed prevalently as homodimers, whereas the Nkrp1a displays larger proportion of monomers on the cell surface. Cysteine-to-serine mutants revealed the importance of all stalk cysteines for protein dimerization in living cells with a major influence of cysteine at position 74 in two Nkrp1 protein isoforms. Our results represent a new insight into the oligomerization of Nkrp1 receptors on lymphoid cells, which will help to determine their function.


Asunto(s)
Antígenos Ly/análisis , Subfamilia B de Receptores Similares a Lectina de Células NK/análisis , Receptores Inmunológicos/análisis , Animales , Células COS , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Humanos , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Subfamilia B de Receptores Similares a Lectina de Células NK/química , Multimerización de Proteína , Replegamiento Proteico
14.
Anal Chem ; 90(2): 1104-1113, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29232109

RESUMEN

Chemical cross-linking coupled with mass spectrometry is a popular technique for deriving structural information on proteins and protein complexes. Also, cross-linking has become a powerful tool for stabilizing macromolecular complexes for single-particle cryo-electron microscopy. However, an effect of cross-linking on protein structure and function should not be forgotten, and surprisingly, it has not been investigated in detail so far. Here, we used kinetic studies, mass spectrometry, and NMR spectroscopy to systematically investigate an impact of cross-linking on structure and function of human carbonic anhydrase and alcohol dehydrogenase 1 from Saccharomyces cerevisiae. We found that cross-linking induces rather local structural disturbances and the overall fold is preserved even at a higher cross-linker concentration. The results establish general experimental conditions for chemical cross-linking with minimal effect on protein structure and function.


Asunto(s)
Alcohol Deshidrogenasa/química , Anhidrasas Carbónicas/química , Reactivos de Enlaces Cruzados/química , Humanos , Espectrometría de Masas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína
15.
J Biol Chem ; 291(39): 20753-65, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27514745

RESUMEN

Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, regulates diverse physiological processes. The activity of ASK1 is triggered by various stress stimuli and is involved in the pathogenesis of cancer, neurodegeneration, inflammation, and diabetes. ASK1 forms a high molecular mass complex whose activity is, under non-stress conditions, suppressed through interaction with thioredoxin and the scaffolding protein 14-3-3. The 14-3-3 protein binds to the phosphorylated Ser-966 motif downstream of the ASK1 kinase domain. The role of 14-3-3 in the inhibition of ASK1 has yet to be elucidated. In this study we performed structural analysis of the complex between the ASK1 kinase domain phosphorylated at Ser-966 (pASK1-CD) and the 14-3-3ζ protein. Small angle x-ray scattering (SAXS) measurements and chemical cross-linking revealed that the pASK1-CD·14-3-3ζ complex is dynamic and conformationally heterogeneous. In addition, structural analysis coupled with the results of phosphorus NMR and time-resolved tryptophan fluorescence measurements suggest that 14-3-3ζ interacts with the kinase domain of ASK1 in close proximity to its active site, thus indicating this interaction might block its accessibility and/or affect its conformation.


Asunto(s)
Proteínas 14-3-3/química , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , MAP Quinasa Quinasa Quinasa 5/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Dominio Catalítico , Humanos , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
16.
Methods ; 89: 112-20, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26048481

RESUMEN

Chemical cross-linking is a promising technology for protein tertiary structure determination. Though the data has low spatial resolution, it is possible to obtain it at physiological conditions on proteins that are not amenable to standard high resolution techniques such as X-ray, NMR analysis and cryo-EM. Here we demonstrate the utilization of isotopically labeled chemical cross-linking to visualize protein conformation rearrangements. Since calmodulin exists in two distinct conformations (calcium-free and calcium-containing forms), we selected this protein for testing the potential and the limits of a new technique. After cross-linking of both calmodulin forms, the calcium-free and calcium-containing forms were mixed together and digested under different conditions and the products of proteolysis were monitored using high resolution mass spectrometry. Finally, the ratios of heavy/light cross-links were calculated by mMass open source platform.


Asunto(s)
Calmodulina/análisis , Calmodulina/química , Reactivos de Enlaces Cruzados/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Bovinos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Estructura Secundaria de Proteína
17.
J Biol Chem ; 289(20): 13948-61, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24713696

RESUMEN

Trehalases hydrolyze the non-reducing disaccharide trehalose amassed by cells as a universal protectant and storage carbohydrate. Recently, it has been shown that the activity of neutral trehalase Nth1 from Saccharomyces cerevisiae is mediated by the 14-3-3 protein binding that modulates the structure of both the catalytic domain and the region containing the EF-hand-like motif, whose role in the activation of Nth1 is unclear. In this work, the structure of the Nth1·14-3-3 complex and the importance of the EF-hand-like motif were investigated using site-directed mutagenesis, hydrogen/deuterium exchange coupled to mass spectrometry, chemical cross-linking, and small angle x-ray scattering. The low resolution structural views of Nth1 alone and the Nth1·14-3-3 complex show that the 14-3-3 protein binding induces a significant structural rearrangement of the whole Nth1 molecule. The EF-hand-like motif-containing region forms a separate domain that interacts with both the 14-3-3 protein and the catalytic trehalase domain. The structural integrity of the EF-hand like motif is essential for the 14-3-3 protein-mediated activation of Nth1, and calcium binding, although not required for the activation, facilitates this process by affecting its structure. Our data suggest that the EF-hand like motif-containing domain functions as the intermediary through which the 14-3-3 protein modulates the function of the catalytic domain of Nth1.


Asunto(s)
Motivos EF Hand , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Trehalasa/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , Dominio Catalítico , Activación Enzimática , Modelos Moleculares , Trehalasa/química
18.
Biochim Biophys Acta ; 1830(10): 4491-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23726992

RESUMEN

BACKGROUND: Trehalases are highly conserved enzymes catalyzing the hydrolysis of trehalose in a wide range of organisms. The activity of yeast neutral trehalase Nth1 is regulated in a 14-3-3- and a calcium-dependent manner. The Bmh proteins (the yeast 14-3-3 isoforms) recognize phosphorylated Nth1 and enhance its enzymatic activity through an unknown mechanism. METHODS: To investigate the structural basis of interaction between Nth1 and Bmh1, we used hydrogen/deuterium exchange coupled to mass spectrometry, circular dichroism spectroscopy and homology modeling to identify structural changes occurring upon the complex formation. RESULTS: Our results show that the Bmh1 protein binding affects structural properties of several regions of phosphorylated Nth1: the N-terminal segment containing phosphorylation sites responsible for Nth1 binding to Bmh, the region containing the calcium binding domain, and segments surrounding the active site of the catalytic trehalase domain. The complex formation between Bmh1 and phosphorylated Nth1, however, is not accompanied by the change in the secondary structure composition but rather the change in the tertiary structure. CONCLUSIONS: The 14-3-3 protein-dependent activation of Nth1 is based on the structural change of both the calcium binding domain and the catalytic trehalase domain. These changes likely increase the accessibility of the active site, thus resulting in Nth1 activation. GENERAL SIGNIFICANCE: The results presented here provide a structural view of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1, which might be relevant to understand the process of Nth1 activity regulation as well as the role of the 14-3-3 proteins in the regulation of other enzymes.


Asunto(s)
Proteínas 14-3-3/metabolismo , Saccharomyces cerevisiae/enzimología , Trehalasa/metabolismo , Dicroismo Circular , Activación Enzimática , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica
19.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1748-57, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23999298

RESUMEN

The Escherichia coli protein WrbA, an FMN-dependent NAD(P)H:quinone oxidoreductase, was crystallized under new conditions in the presence of FAD or the native cofactor FMN. Slow-growing deep yellow crystals formed with FAD display the tetragonal bipyramidal shape typical for WrbA and diffract to 1.2 Šresolution, the highest yet reported. Faster-growing deep yellow crystals formed with FMN display an atypical shape, but diffract to only ∼1.6 Šresolution and are not analysed further here. The 1.2 Šresolution structure detailed here revealed only FMN in the active site and no electron density that can accommodate the missing parts of FAD. The very high resolution supports the modelling of the FMN isoalloxazine with a small but distinct propeller twist, apparently the first experimental observation of this predicted conformation, which appears to be enforced by the protein through a network of hydrogen bonds. Comparison of the electron density of the twisted isoalloxazine ring with the results of QM/MM simulations is compatible with the oxidized redox state. The very high resolution also supports the unique refinement of Met10 as the sulfoxide, confirmed by mass spectrometry. Bond lengths, intramolecular distances, and the pattern of hydrogen-bond donors and acceptors suggest the cofactor may interact with Met10. Slow incorporation of FMN, which is present as a trace contaminant in stocks of FAD, into growing crystals may be responsible for the near-atomic resolution, but a direct effect of the conformation of FMN and/or Met10 sulfoxide cannot be ruled out.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas Represoras/química , Cristalización , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/química , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidación-Reducción , Unión Proteica , Proteínas Represoras/metabolismo , Difracción de Rayos X
20.
Sci Rep ; 13(1): 8841, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258554

RESUMEN

Intermediate filaments (IFs) are essential constituents of the metazoan cytoskeleton. A vast family of cytoplasmic IF proteins are capable of self-assembly from soluble tetrameric species into typical 10-12 nm wide filaments. The primary structure of these proteins includes the signature central 'rod' domain of ~ 300 residues which forms a dimeric α-helical coiled coil composed of three segments (coil1A, coil1B and coil2) interconnected by non-helical, flexible linkers (L1 and L12). The rod is flanked by flexible terminal head and tail domains. At present, the molecular architecture of mature IFs is only poorly known, limiting our capacity to rationalize the effect of numerous disease-related mutations found in IF proteins. Here we addressed the molecular structure of soluble vimentin tetramers which are formed by two antiparallel, staggered dimers with coil1B domains aligned (A11 tetramers). By examining a series of progressive truncations, we show that the presence of the coil1A domain is essential for the tetramer formation. In addition, we employed a novel chemical cross-linking pipeline including isotope labelling to identify intra- and interdimeric cross-links within the tetramer. We conclude that the tetramer is synergistically stabilized by the interactions of the aligned coil1B domains, the interactions between coil1A and the N-terminal portion of coil2, and the electrostatic attraction between the oppositely charged head and rod domains. Our cross-linking data indicate that, starting with a straight A11 tetramer, flexibility of linkers L1 and L12 enables 'backfolding' of both the coil1A and coil2 domains onto the tetrameric core formed by the coil1B domains. Through additional small-angle X-ray scattering experiments we show that the elongated A11 tetramers dominate in low ionic strength solutions, while there is also a significant structural flexibility especially in the terminal domains.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Animales , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Estructura Molecular , Citoesqueleto/metabolismo , Secuencia de Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA