RESUMEN
The interplay of optics, dynamics, and transport is crucial for the design of novel optoelectronic devices, such as photodetectors and solar cells. In this context, transition-metal dichalcogenides (TMDs) have received much attention. Here, strongly bound excitons dominate optical excitation, carrier dynamics, and diffusion processes. While the first two have been intensively studied, there is a lack of fundamental understanding of nonequilibrium phenomena associated with exciton transport that is of central importance (e.g., for high-efficiency light harvesting). In this work, we provide microscopic insights into the interplay of exciton propagation and many-particle interactions in TMDs. On the basis of a fully quantum mechanical approach and in excellent agreement with photoluminescence measurements, we show that Auger recombination and emission of hot phonons act as a heating mechanism giving rise to strong spatial gradients in excitonic temperature. The resulting thermal drift leads to an unconventional exciton diffusion characterized by spatial exciton halos.
RESUMEN
We directly monitor exciton propagation in freestanding and SiO_{2}-supported WS_{2} monolayers through spatially and time-resolved microphotoluminescence under ambient conditions. We find a highly nonlinear behavior with characteristic, qualitative changes in the spatial profiles of the exciton emission and an effective diffusion coefficient increasing from 0.3 to more than 30 cm^{2}/s, depending on the injected exciton density. Solving the diffusion equation while accounting for Auger recombination allows us to identify and quantitatively understand the main origin of the increase in the observed diffusion coefficient. At elevated excitation densities, the initial Gaussian distribution of the excitons evolves into long-lived halo shapes with µm-scale diameter, indicating additional memory effects in the exciton dynamics.
RESUMEN
Understanding and controlling disorder is key to nanotechnology and materials science. Traditionally, disorder is attributed to local fluctuations of inherent material properties such as chemical and structural composition, doping or strain. Here, we present a fundamentally new source of disorder in nanoscale systems that is based entirely on the local changes of the Coulomb interaction due to fluctuations of the external dielectric environment. Using two-dimensional semiconductors as prototypes, we experimentally monitor dielectric disorder by probing the statistics and correlations of the exciton resonances, and theoretically analyse the influence of external screening and phonon scattering. Even moderate fluctuations of the dielectric environment are shown to induce large variations of the bandgap and exciton binding energies up to the 100 meV range, often making it a dominant source of inhomogeneities. As a consequence, dielectric disorder has strong implications for both the optical and transport properties of nanoscale materials and their heterostructures.