RESUMEN
Vertebrate oocytes arrest at prophase of meiosis I as a result of high levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) activity. In Xenopus, progesterone is believed to release meiotic arrest by inhibiting adenylate cyclase, lowering cAMP levels and repressing PKA. However, the exact timing and extent of the cAMP decrease is unclear, with conflicting reports in the literature. Using various in vivo reporters for cAMP and PKA at the single-cell level in real time, we fail to detect any significant changes in cAMP or PKA in response to progesterone. More interestingly, there was no correlation between the levels of PKA inhibition and the release of meiotic arrest. Furthermore, we devised conditions whereby meiotic arrest could be released in the presence of sustained high levels of cAMP. Consistently, lowering endogenous cAMP levels by >65% for prolonged time periods failed to induce spontaneous maturation. These results argue that the release of oocyte meiotic arrest in Xenopus is independent of a reduction in either cAMP levels or PKA activity, but rather proceeds through a parallel cAMP/PKA-independent pathway.
Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Profase Meiótica I , Oocitos/citología , Oocitos/metabolismo , Xenopus laevis/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Profase Meiótica I/efectos de los fármacos , Modelos Biológicos , Progesterona/farmacología , Fracciones Subcelulares/metabolismo , Proteínas de Xenopus/metabolismoRESUMEN
Vertebrate oocytes are naturally arrested at prophase of meiosis I for sustained periods of time before resuming meiosis in a process called oocyte maturation that prepares the egg for fertilization. Members of the constitutively active GPR3/6/12 family of G-protein coupled receptors represent important mediators of meiotic arrest. In the frog oocyte the GPR3/12 homolog GPRx (renamed GPR185) has been shown to sustain meiotic arrest by increasing intracellular cAMP levels through GαSßγ. Here we show that GPRx is enriched at the cell membrane (~80%), recycles through an endosomal compartment at steady state, and loses its ability to signal once trapped intracellularly. Progesterone-mediated oocyte maturation is associated with significant internalization of both endogenous and overexpressed GPRx. Furthermore, a GPRx mutant that does not internalize in response to progesterone is significantly more efficient than wild-type GPRx at blocking oocyte maturation. Collectively our results argue that internalization of the constitutively active GPRx is important to release oocyte meiotic arrest.
Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Endocitosis/fisiología , Meiosis/fisiología , Modelos Biológicos , Oocitos/crecimiento & desarrollo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/crecimiento & desarrollo , Animales , Western Blotting , AMP Cíclico/metabolismo , Cartilla de ADN/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteína Fluorescente RojaRESUMEN
Wnt signaling and HOM-C/Hox genes pattern cell fate along the anterior/posterior axis in many animals. In general, Wnt signaling participates in establishing the anterior/posterior axis, whereas HOM-C genes confer regional identities to cells along the axis. However, recent work in non-bilaterial metazoans suggests that the ancestral patterning system relied on Wnts, with a later co-option of HOM-C genes to replace Wnts in regional patterning. Here we provide direct experimental support for this model from C. elegans, where a regional Wnt patterning system is uncovered in HOM-C gene mutants. Anterior/posterior patterning of P11/P12 cell fate in the C. elegans tail is normally dependent on the HOM-C gene egl-5/Abdominal-B. If the HOM-C gene mab-5/fushi tarazu is also mutant, however, a Wnt signal can promote P12 fate in the absence of egl-5. Furthermore, transcription of egl-5 in the P12.pa cell is influenced by an autoregulatory element that is essential in wild type, but not in mab-5 egl-5 double mutants, identifying regulatory parallels between P12 cell fate specification and egl-5 transcriptional regulation in the P12 lineage. Together, our results identify complex regulatory relationships among signaling pathways and HOM-C genes, and uncover a layering of patterning systems that may reflect their evolutionary history.
Asunto(s)
Tipificación del Cuerpo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Epidermis/embriología , Genes Homeobox , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo/efectos de los fármacos , Caenorhabditis elegans/citología , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Fusión Celular , Linaje de la Célula/efectos de los fármacos , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Células Epidérmicas , Factor de Crecimiento Epidérmico/farmacología , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Homeostasis/efectos de los fármacos , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Transducción de Señal/efectos de los fármacos , TransgenesRESUMEN
Store-operated Ca2+ entry (SOCE) has been shown to be important for breast cancer metastasis in xenograft mouse models. The ER Ca2+ sensor STIM1 and Orai plasma membrane Ca2+ channels molecularly mediate SOCE. Here we investigate the role of the microRNA machinery in regulating STIM1 expression. We show that STIM1 expression is regulated post-transcriptionally by the miRNA machinery and identify miR-223 and miR-150 as regulators of STIM1 expression in the luminal non-aggressive MCF7 breast cancer cell line. In contrast, STIM1 expression in the more aggressive basal triple-negative MDA-MB-231 cell line is not significantly modulated by a single miRNA species but is rather upregulated due to inhibition of the miRNA machinery through downregulation of Ago2. Consistently, overexpression of Ago2 results in decreased STIM1 protein levels in MDA-MB-231 cells. Clinically, STIM1 and Ago2 expression levels do not correlate with breast cancer progression, however in the basal subtype high STIM1 expression is associated with poorer survival. Our findings show that STIM1 expression is differentially regulated by the miRNA machinery in different cell types and argue for a role for this regulation in breast cancer.
Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteínas de Neoplasias/genética , Interferencia de ARN , Molécula de Interacción Estromal 1/genética , Regiones no Traducidas 3' , Proteínas Argonautas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Especificidad de Órganos , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARNRESUMEN
Diabetes is a complex disease that is characterized with hyperglycemia, dyslipidemia, and insulin resistance. These pathologies are associated with significant cardiovascular implications that affect both the macro- and microvasculature. It is therefore important to understand the effects of various pathologies associated with diabetes on the vasculature. Here we directly test the effects of hyperglycemia on vascular smooth muscle (VSM) Ca2+ signaling in an isolated in vitro system using the A7r5 rat aortic cell line as a model. We find that prolonged exposure of A7r5 cells to hyperglycemia (weeks) is associated with changes to Ca2+ signaling, including most prominently an inhibition of the passive ER Ca2+ leak and the sarcoplasmic reticulum Ca2+-ATPase (SERCA). To translate these findings to the in vivo condition, we used primary VSM cells from normal and diabetic subjects and find that only the inhibition of the ER Ca2+ leaks replicates in cells from diabetic donors. These results show that prolonged hyperglycemia in isolation alters the Ca2+ signaling machinery in VSM cells. However, these alterations are not readily translatable to the whole organism situation where alterations to the Ca2+ signaling machinery are different.
Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Hiperglucemia/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Animales , Señalización del Calcio/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Glucosa/administración & dosificación , Glucosa/efectos adversos , Humanos , Hiperglucemia/genética , Hiperglucemia/patología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratas , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/enzimología , Transducción de Señal/efectos de los fármacosRESUMEN
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Asunto(s)
Señalización del Calcio , Fertilización , Oocitos/fisiología , Animales , Desarrollo Embrionario , XenopusRESUMEN
Animals respond to hypoxia by increasing synthesis of the glycoprotein hormone erythropoietin (Epo) which in turn stimulates the production of red blood cells. The gene encoding Epo has been recently cloned in teleost fishes such as the pufferfish Takifugu rubripes (fugu) and zebrafish (Danio rerio). It has been shown that the transcription levels of Epo in teleost fishes increase in response to anemia or hypoxia in a manner similar to its human ortholog. However, the cis-regulatory element(s) mediating the hypoxia response of Epo gene in fishes has not been identified. In the present study, using the human hepatoma cell line (Hep3B), we have identified and characterized a hypoxia response element (HRE) in the fugu Epo locus. The sequence of the fugu HRE (ACGTGCTG) is identical to that of the HRE in the human EPO locus. However, unlike the HRE in the mammalian Epo locus, which is located in the 3' region of the gene, the fugu HRE is located in the 5' flanking region and on the opposite strand of DNA. This HRE is conserved in other teleosts such as Tetraodon and zebrafish in a similar location. A 365-bp fragment containing the fugu HRE was able to drive GFP expression in the liver of transgenic zebrafish. However, we could not ascertain if the expression of transgene is induced by hypoxia in vivo due to the low and variable levels of GFP expression in transgenic zebrafish. Our investigations also revealed that the Epo locus has experienced extensive rearrangements during vertebrate evolution.