Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Physiol Plant ; 171(4): 785-801, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33280130

RESUMEN

The ATP-binding cassette (ABC) transporters belong to a large protein family predominantly present in diverse species. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. These proteins are localized in the membranes of chloroplasts, mitochondria, peroxisomes and vacuoles. ABC proteins are involved in regulating diverse biological processes in plants, such as growth, development, uptake of nutrients, tolerance to biotic and abiotic stresses, tolerance to metal toxicity, stomatal closure, shape and size of grains, protection of pollens, transport of phytohormones, etc. In mitochondria and chloroplast, the iron metabolism and its transport across the membrane are mediated by ABC transporters. Tonoplast-localized ABC transporters are involved in internal detoxification of metal ion; thus protecting against the DNA impairment and maintaining cell growth. ABC transporters are involved in the transport of secondary metabolites inside the cells. Microorganisms also engage a large number of ABC transporters to import and expel substrates decisive for their pathogenesis. ABC transporters also suppress the seed embryonic growth until favorable conditions come. This review aims at giving insights on ABC transporters, their evolution, structure, functions and roles in different biological processes for helping the terrestrial plants to survive under adverse environmental conditions. These specialized plant membrane transporters ensure a sustainable economic yield and high-quality products, especially under unfavorable conditions of growth. These transporters can be suitably manipulated to develop 'Plants for the Future'.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Plantas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Homeostasis , Plantas/metabolismo , Estrés Fisiológico
2.
Funct Integr Genomics ; 19(2): 329-348, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30465139

RESUMEN

Terminal heat stress has detrimental effect on the growth and yield of wheat. Very limited information is available on heat stress-associated active proteins (SAAPs) in wheat. Here, we have identified 159 protein groups with 4271 SAAPs in control (22 ± 3 °C) and HS-treated (38 °C, 2 h) wheat cvs. HD2985 and HD2329 using iTRAQ. We identified 3600 proteins to be upregulated and 5825 proteins to be downregulated in both the wheat cvs. under HS. We observed 60.3% of the common SAAPs showing upregulation in HD2985 (thermotolerant) and downregulation in HD2329 (thermosusceptible) under HS. GO analysis showed proton transport (molecular), photosynthesis (biological), and ATP binding (cellular) to be most altered under HS. Most of the SAAPs identified were observed to be chloroplast localized and involved in photosynthesis. Carboxylase enzyme was observed most abundant active enzymes in wheat under HS. An increase in the degradative isoenzymes (α/ß-amylases) was observed, as compared to biosynthesis enzymes (ADP-glucophosphorylase, soluble starch synthase, etc.) under HS. Transcript profiling showed very high relative fold expression of HSP17, CDPK, Cu/Zn SOD, whereas downregulation of AGPase, SSS under HS. The identified SAAPs can be used for targeted protein-based precision wheat-breeding program for the development of 'climate-smart' wheat.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Proteínas de Plantas/genética , Proteoma/genética , Termotolerancia , Triticum/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Transcriptoma , Triticum/metabolismo
3.
Ecotoxicol Environ Saf ; 174: 637-648, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30875557

RESUMEN

Gamma irradiation has been reported to modulate the biochemical and molecular parameters associated with the tolerance of plant species under biotic/ abiotic stress. Wheat is highly sensitive to heat stress (HS), as evident from the decrease in the quantity and quality of the total grains. Here, we studied the effect of pre-treatment of wheat dry seeds with different doses of gamma irradiation (0.20, 0.25 and 0.30 kGy) on tolerance level and quality of developing wheat endospermic tissue under HS (38 °C, 1 h; continuously for three days). Expression analysis of genes associated with defence and starch metabolism in developing grains showed maximum transcripts of HSP17 (in response to 0.25 kGy + HS) and AGPase (under 0.30 kGy), as compared to control. Gamma irradiation was observed to balance the accumulation of H2O2 by enhancing the activities of SOD and GPx in both the cvs. under HS. Gamma irradiation was observed to stabilize the synthesis of starch and amylose by regulating the activities of AGPase, SSS and α-amylase under HS. The appearance of isoforms of gliadins (α, ß, γ, ω) were observed more in gamma irradiated seeds (0.20 kGy), as compared to control. Gamma irradiation (0.25 kGy in HD3118 & 0.20 kGy in HD3086) was observed to have positive effect on the width, length and test seed weight of the grains under HS. The information generated in present investigation provides easy, cheap and user-friendly technology to mitigate the effect of terminal HS on the grain-development process of wheat along with development of robust seeds with high nutrient density.


Asunto(s)
Grano Comestible/efectos de la radiación , Endospermo/efectos de la radiación , Rayos gamma , Estrés Oxidativo/efectos de la radiación , Triticum , Grano Comestible/enzimología , Grano Comestible/fisiología , Endospermo/enzimología , Endospermo/fisiología , Irradiación de Alimentos , Respuesta al Choque Térmico/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Semillas/enzimología , Semillas/fisiología , Semillas/efectos de la radiación , Almidón/biosíntesis
4.
Funct Integr Genomics ; 17(6): 621-640, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28573536

RESUMEN

Global warming is a major threat for agriculture and food security, and in many cases the negative impacts are already apparent. Wheat is one of the most important staple food crops and is highly sensitive to the heat stress (HS) during reproductive and grain-filling stages. Here, whole transcriptome analysis of thermotolerant wheat cv. HD2985 was carried out at the post-anthesis stage under control (22 ± 3 °C) and HS-treated (42 °C, 2 h) conditions using Illumina Hiseq and Roche GS-FLX 454 platforms. We assembled ~24 million (control) and ~23 million (HS-treated) high-quality trimmed reads using different assemblers with optimal parameters. De novo assembly yielded 52,567 (control) and 59,658 (HS-treated) unigenes. We observed 785 transcripts to be upregulated and 431 transcripts to be downregulated under HS; 78 transcripts showed >10-fold upregulation such as HSPs, metabolic pathway-related genes, etc. Maximum number of upregulated genes was observed to be associated with processes such as HS-response, protein-folding, oxidation-reduction and photosynthesis. We identified 2008 and 2483 simple sequence repeats (SSRs) markers from control and HS-treated samples; 243 SSRs were observed to be overlying on stress-associated genes. Polymorphic study validated four SSRs to be heat-responsive in nature. Expression analysis of identified differentially expressed transcripts (DETs) showed very high fold increase in the expression of catalytic chaperones (HSP26, HSP17, and Rca) in contrasting wheat cvs. HD2985 and HD2329 under HS. We observed positive correlation between RNA-seq and qRT-PCR expression data. The present study culminated in greater understanding of the heat-response of tolerant genotype and has provided good candidate genes for the marker development and screening of wheat germplasm for thermotolerance.


Asunto(s)
Aclimatación , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Repeticiones de Microsatélite , Proteínas de Plantas/genética , Triticum/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Triticum/crecimiento & desarrollo
5.
Indian J Biochem Biophys ; 51(5): 396-406, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25630110

RESUMEN

Antioxidant enzymes, besides being involved in various developmental processes, are known to be important for environmental stress tolerance in plants. In this study, the effect of treatment of 2.5 mM putrescine (Put), heat stress (HS -42 degrees C for 2 h) and their combination on the expression and activity of antioxidant enzymes was studied at pre-anthesis in the leaves of two wheat (Triticum aestivum L.) cultivars--HDR77 (thermotolerant) and HD2329 (thermosusceptible). We observed that 2.5 mM Put before HS significantly enhanced the transcript levels of superoxide dismutase (SOD), catalase (CAT), cytoplasmic and peroxisomal ascorbate peroxidase (cAPX, pAPX) in both the cultivars. However, the activities of antioxidant enzymes (SOD, CAT, APX and GR), as well as accumulation of antioxidants (ascorbic acid and total thiol content) were higher in HDR77 than in HD2329 in response to the treatment 2.5 mM Put + HS. No significant change was observed in the proline accumulation in response to HS and combined treatment of 2.5 mM Put + HS. A decrease in the H2O2 accumulation, lipid peroxidation and increase in cell membrane stability (CMS) were observed in response to 2.5 mM Put + HS treatment, as compared to HS treatment alone in both the cultivars; HDR77 was, however, more responsive to 2.5 mM Put + HS treatment. Put (2.5 mM) treatment at pre-anthesis thus modulated the defense mechanism responsible for the thermotolerance capacity of wheat under the heat stress. Elicitors like Put, therefore, need to be further studied for temporarily manipulating the thermotolerance capacity of wheat grown under the field conditions in view of the impending global climate change.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Estrés Oxidativo/fisiología , Hojas de la Planta/fisiología , Putrescina/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Triticum/efectos de los fármacos , Triticum/fisiología , Respuesta al Choque Térmico , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos
6.
PeerJ ; 12: e16722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406271

RESUMEN

Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.


Asunto(s)
Sitios de Carácter Cuantitativo , Vigna , Sitios de Carácter Cuantitativo/genética , Vigna/genética , Mapeo Cromosómico , Genotipo , Suelo , Tricomas/genética , Hojas de la Planta/genética
7.
3 Biotech ; 14(6): 150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725866

RESUMEN

Calcium-dependent protein kinase (CDPK) is member of one of the most important signalling cascades operating inside the plant system due to its peculiar role as thermo-sensor. Here, we identified 28 full length putative CDPKs from wheat designated as TaCDPK (1-28). Based on digital gene expression, we cloned full length TaCPK-1 gene of 1691 nucleotides with open reading frame (ORF) of 548 amino acids (accession number OP125853). The expression of TaCPK-1 was observed maximum (3.1-fold) in leaf of wheat cv. HD2985 (thermotolerant) under T2 (38 ± 3 °C, 2 h), as compared to control. A positive correlation was observed between the expression of TaCPK-1 and other stress-associated genes (MAPK6, CDPK4, HSFA6e, HSF3, HSP17, HSP70, SOD and CAT) involved in thermotolerance. Global protein kinase assay showed maximum activity in leaves, as compared to root, stem and spike under heat stress. Immunoblot analysis showed abundance of CDPK protein in wheat cv. HD2985 (thermotolerant) in response to T2 (38 ± 3 °C, 2 h), as compared to HD2329 (thermosusceptible). Calcium ion (Ca2+), being inducer of CDPK, showed strong Ca-signature in the leaf tissue (Ca-622 ppm) of thermotolerant wheat cv. under heat stress, whereas it was minimum (Ca-201 ppm) in spike tissue. We observed significant variations in the ionome of wheat under HS. To conclude, TaCPK-1 plays important role in triggering signaling network and in modulation of HS-tolerance in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03989-6.

8.
PeerJ ; 12: e16653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288464

RESUMEN

Yellow mosaic disease (YMD) remains a major constraint in mungbean (Vigna radiata (L.)) production; while short-duration genotypes offer multiple crop cycles per year and help in escaping terminal heat stress, especially during summer cultivation. A comprehensive genotyping by sequencing (GBS)-based genome-wide association studies (GWAS) analysis was conducted using 132 diverse mungbean genotypes for traits like flowering time, YMD resistance, soil plant analysis development (SPAD) value, trichome density, and leaf area. The frequency distribution revealed a wide range of values for all the traits. GBS studies identified 31,953 high-quality single nucleotide polymorphism (SNPs) across all 11 mungbean chromosomes and were used for GWAS. Structure analysis revealed the presence of two genetically distinct populations based on ΔK. The linkage disequilibrium (LD) varied throughout the chromosomes and at r2 = 0.2, the mean LD decay was estimated as 39.59 kb. Two statistical models, mixed linear model (MLM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) identified 44 shared SNPs linked with various candidate genes. Notable candidate genes identified include FPA for flowering time (VRADI10G01470; chr. 10), TIR-NBS-LRR for mungbean yellow mosaic India virus (MYMIV) resistance (VRADI09G06940; chr. 9), E3 ubiquitin-protein ligase RIE1 for SPAD value (VRADI07G28100; chr. 11), WRKY family transcription factor for leaf area (VRADI03G06560; chr. 3), and LOB domain-containing protein 21 for trichomes (VRADI06G04290; chr. 6). In-silico validation of candidate genes was done through digital gene expression analysis using Arabidopsis orthologous (compared with Vigna radiata genome). The findings provided valuable insight for marker-assisted breeding aiming for the development of YMD-resistant and early-maturing mungbean varieties.


Asunto(s)
Vigna , Vigna/genética , Estudio de Asociación del Genoma Completo , Genotipo , Teorema de Bayes , Fitomejoramiento
9.
Indian J Biochem Biophys ; 50(2): 126-38, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23720887

RESUMEN

Abiotic stress causes abrupt increase in the expression of stress-associated proteins, which provide tolerance by modulating the defense mechanism of plants. Small heat shock proteins (sHSPs) and anti-oxidant enzymes are important for environmental stress tolerance of the plants. In this study, two full-length cDNAs encoding small heat shock protein (sHSP) and superoxide dismutase (SOD), designated as TasHSP and SODI were identified and characterized from C-306 (thermotolerant) and PBW343 (thermosusceptible) cultivars of wheat (Triticum aestivum L.). An alpha crystalline domain was observed in TasHSP and manganese/iron binding domain in case of SODI. Quantitative real-time PCR showed very high transcript level of TasHSP and SOD in C-306 compared to PBW343 at different stages of growth and against differential heat stress (HS). Under differential HS at milky-dough stage, the fold change in transcript of both TasHSP and SOD was observed maximum in C-306, compared to PBW343. Protein profiling and isoenzymes analysis showed the expression of several heat-stable proteins and prominent isoenzymes of SOD in C-306, compared to PBW343. Scanning electron microscopy (SEM) of starch granules showed globular, well-shaped and more numbers of endospermic cells in C-306, compared to defragmented, irregular shaped and shrunken granules in case of PBW343 under HS treatment (42 degrees C for 2 h). Diurnal change in soluble starch synthase (SSS) activity showed an increase in the activity during afternoon (35 degrees C), compared to morning (29 degrees C) and evening (32 degrees C) in both the cultivars. Under heat stress (42 degrees C for 2 h), a drastic decrease in the SSS activity was observed, due to the thermal denaturation of the enzyme. Thermotolerance capacity analyzed using cell membrane stability (CMS) showed significantly higher CMS in case of C-306, compared to PBW343 at different stages of growth. Findings suggest that abundance of TasHSP and SODI during milky-dough stage plays a very important role in starch granule biosynthesis. The mechanism may be further exploited to develop tolerant wheat cultivar with high quality seeds.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/metabolismo , Almidón/metabolismo , Triticum/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Membrana Celular/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Perfilación de la Expresión Génica , Calor , Isoenzimas/metabolismo , Microscopía Electrónica de Rastreo , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Homología de Secuencia de Aminoácido , Almidón Sintasa/metabolismo , Superóxido Dismutasa/metabolismo
10.
Plants (Basel) ; 12(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37896061

RESUMEN

Heat shock transcription factors (HSFs) contribute significantly to thermotolerance acclimation. Here, we identified and cloned a putative HSF gene (HSFA2h) of 1218 nucleotide (acc. no. KP257297.1) from wheat cv. HD2985 using a de novo transcriptomic approach and predicted sHSP as its potential target. The expression of HSFA2h and its target gene (HSP17) was observed at the maximum level in leaf tissue under heat stress (HS), as compared to the control. The HSFA2h-pRI101 binary construct was mobilized in Arabidopsis, and further screening of T3 transgenic lines showed improved tolerance at an HS of 38 °C compared with wild type (WT). The expression of HSFA2h was observed to be 2.9- to 3.7-fold higher in different Arabidopsis transgenic lines under HS. HSFA2h and its target gene transcripts (HSP18.2 in the case of Arabidopsis) were observed to be abundant in transgenic Arabidopsis plants under HS. We observed a positive correlation between the expression of HSFA2h and HSP18.2 under HS. Evaluation of transgenic lines using different physio-biochemical traits linked with thermotolerance showed better performance of HS-treated transgenic Arabidopsis plants compared with WT. There is a need to further characterize the gene regulatory network (GRN) of HSFA2h and sHSP in order to modulate the HS tolerance of wheat and other agriculturally important crops.

11.
PLoS One ; 17(5): e0268085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35609036

RESUMEN

Microgreens have been used for raw consumption and are generally viewed as healthy food. This study aimed to optimize the yield parameters, shelf life, sensory evaluation and characterization of total aerobic bacteria (TAB), yeast and mold (Y&M), Escherichia coli, Salmonella spp., and Listeria spp. incidence in mungbean (Vigna radiata (L.) Wilczek), lentil (Lens culinaris Medikus subsp. culinaris), and Indian mustard (Brassica juncea (L.) Czern & Coss.) microgreens. In mungbean and lentil, seeding-density of three seed/cm2, while in Indian mustard, eight seed/cm2 were recorded as optimum. The optimal time to harvest mungbean, Indian mustard, and lentil microgreens were found as 7th, 8th, and 9th day after sowing, respectively. Interestingly, seed size was found highly correlated with the overall yield in both mungbeans (r2 = .73) and lentils (r2 = .78), whereas no such relationship has been recorded for Indian mustard microgreens. The target pathogenic bacteria such as Salmonella spp. and Listeria spp. were not detected; while TAB, Y&M, Shigella spp., and E. coli were recorded well within the limit to cause any human illness in the studied microgreens. Washing with double distilled water for two minutes has shown some reduction in the overall microbial load of these microgreens. The results provided evidence that microgreens if grown and stored properly, are generally safe for human consumption. This is the first study from India on the safety of mungbean, lentils, and Indian mustard microgreens.


Asunto(s)
Fabaceae , Lens (Planta) , Listeria , Vigna , Escherichia coli , Hongos , Humanos , Lens (Planta)/microbiología , Planta de la Mostaza , Salmonella
12.
Food Chem ; 361: 130031, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058661

RESUMEN

Pearl millet is considered as 'nutri-cereal' because of high nutrient density of the seeds. The grain has limited use because of low keeping quality of the flour due to the activities of rancidity causing enzymes like lipase, lox, pox and PPO. Among all the enzymes, lipase is most notorious because of its robust nature and high activity under different conditions. we have identified 2180 putative transcripts showing homology with different variants of lipase precursor through transcriptome data mining (NCBI BioProject acc. no. PRJNA625418). Lipase plays dual role of facilitating the germination of seeds and deteriorating the quality of the pearl millet flour through hydrolytic rancidity. Different physiochemical methods like heat treatment, micro oven, hydrothermal, etc. have been developed to inhibit lipase activity in pearl millet flour. There is further need to develop improved processing technologies to inhibit the hydrolytic and oxidative rancidity in the floor with enhanced shelf-life.


Asunto(s)
Almacenamiento de Alimentos , Germinación , Lipasa/metabolismo , Pennisetum/enzimología , Semillas/enzimología , Harina , Manipulación de Alimentos , Lipasa/fisiología , Pennisetum/fisiología , Semillas/fisiología
13.
Front Plant Sci ; 12: 710812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497624

RESUMEN

Mungbeans and lentils are relatively easily grown and cheaper sources of microgreens, but their phytonutrient diversity is not yet deeply explored. In this study, 20 diverse genotypes each of mungbean and lentil were grown as microgreens under plain-altitude (Delhi) and high-altitude (Leh) conditions, which showed significant genotypic variations for ascorbic acid, tocopherol, carotenoids, flavonoid, total phenolics, DPPH (1, 1-diphenyl-2-picrylhydrazyl), FRAP (ferric-reducing antioxidant power), peroxide activity, proteins, enzymes (peroxidase and catalase), micronutrients, and macronutrients contents. The lentil and mungbean genotypes L830 and MH810, respectively, were found superior for most of the studied parameters over other studied genotypes. Interestingly, for most of the studied parameters, Leh-grown microgreens were found superior to the Delhi-grown microgreens, which could be due to unique environmental conditions of Leh, especially wide temperature amplitude, photosynthetically active radiation (PAR), and UV-B content. In mungbean microgreens, total phenolics content (TPC) was found positively correlated with FRAP and DPPH, while in lentil microgreens, total flavonoid content (TFC) was found positively correlated with DPPH. The most abundant elements recorded were in the order of K, P, and Ca in mungbean microgreens; and K, Ca, and P in the lentil microgreens. In addition, these Fabaceae microgreens may help in the nutritional security of the population residing in the high-altitude regions of Ladakh, especially during winter months when this region remains landlocked due to heavy snowfall.

14.
Biotechnol Rep (Amst) ; 29: e00597, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33659194

RESUMEN

Wheat, being sensitive to terminal heat, causes drastic reduction in grain quality and yield. MAPK cascade regulates the network of defense mechanism operated inside plant system. Here, we have identified 21 novel MAPKs through gel-based proteomics and RNA-seq data analysis. Based on digital gene expression, two transcripts (transcript_2834 and transcript_8242) showing homology with MAPK were cloned and characterized from wheat (acc. nos. MK854806 and KT835664). Transcript_2834 was cloned in pET28a vector and recombinant MAPK protein of ∼40.3 kDa was isolated and characterized to have very high in-vitro kinase activity under HS. Native MAPK showed positive correlation with the expression of TFs, HSPs, genes linked with antioxidant enzyme (SOD, CAT, GPX), photosynthesis and starch biosynthesis pathways in wheat under HS. Wheat cv. HD3086 (thermotolerant) having higher expression and activity of MAPK under HS showed significant increase in accumulation of proline, H2O2, starch, and granule integrity, compared with BT-Schomburgk (thermosusceptible).

15.
PLoS One ; 16(1): e0244593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33434234

RESUMEN

Yellow Mosaic Disease (YMD) in mungbean [Vigna radiata (L.) R. Wilczek] is one of the most damaging diseases in Asia. In the northern part of India, the YMD is caused by Mungbean Yellow Mosaic India Virus (MYMIV), while in southern India this is caused by Mungbean Yellow Mosaic Virus (MYMV). The molecular mechanism of YMD resistance in mungbean remains largely unknown. In this study, RNA-seq analysis was conducted between a resistant (PMR-1) and a susceptible (Pusa Vishal) mungbean genotype under infected and control conditions to understand the regulatory network operating between mungbean-YMV. Overall, 76.8 million raw reads could be generated in different treatment combinations, while mapping rate per library to the reference genome varied from 86.78% to 93.35%. The resistance to MYMIV showed a very complicated gene network, which begins with the production of general PAMPs (pathogen-associated molecular patterns), then activation of various signaling cascades like kinases, jasmonic acid (JA) and brassinosteroid (BR), and finally the expression of specific genes (like PR-proteins, virus resistance and R-gene proteins) leading to resistance response. The function of WRKY, NAC and MYB transcription factors in imparting the resistance against MYMIV could be established. The string analysis also revealed the role of proteins involved in kinase, viral movement and phytoene synthase activity in imparting YMD resistance. A set of novel stress-related EST-SSRs are also identified from the RNA-Seq data which may be used to find the linked genes/QTLs with the YMD resistance. Also, 11 defence-related transcripts could be validated through quantitative real-time PCR analysis. The identified gene networks have led to an insight about the defence mechanism operating against MYMIV infection in mungbean which will be of immense use to manage the YMD resistance in mungbean.


Asunto(s)
Begomovirus/fisiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Vigna/genética , Vigna/virología , Resistencia a la Enfermedad , Redes Reguladoras de Genes , RNA-Seq , Transcriptoma
16.
3 Biotech ; 10(9): 380, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32802722

RESUMEN

Mitogen-activated protein kinase (MAPK) signaling cascade is highly conserved across the species triggering the self-adjustment of the cells by transmitting the external signals to the nucleus. The cascade consists of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs) and MAPKs. These kinases are functionally interrelated through activation by sequential phosphorylation. MAPK cascade is involved in modulating the tolerance and regulating the growth and developmental processes in plants through transcriptional programming. The cascade has been well characterized in Arabidopsis, Tobacco and rice, but limited information is available in wheat due to complexity of genome. MAPK-based sensors have been reported to be highly specific for the external or intracellular stimuli activating specific TF, stress-associated genes (SAGs) and stress-associated proteins (SAPs) linked with heat-stress tolerance and other biological functions especially size, number and quality of grains. Even, MAPKs have been reported to influence the activity of ATP-binding cassette (ABC) transporter superfamily involved in stabilizing the quality of the grains under adverse conditions. Wheat has also diverse network of MAPKs involved in transcriptional reprogramming upon sensing the terminal HS and in turn protect the plants. Current review mainly focuses on the role of MAPKs as signaling sensor and modulator of defense mechanism for mitigating the effect of heat on plants with focus on wheat. It also indirectly protects the nutrient depletion from the grains under heat stress. MAPKs, lying at pivotal positions, can be utilized for manipulating the heat-stress response (HSR) of wheat to develop plant for future (P4F).

17.
3 Biotech ; 10(12): 531, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33214978

RESUMEN

Terminal heat stress (HS) is a key barrier for wheat grain yield and quality. Various physiochemical and molecular parameters such as photosynthetic rate, expression analysis and activity of starch synthase (SS), total starch, amylose and amylopectin content, total amylolytic activity, and total antioxidant capacity (TAC) were analysed in wheat cvs.HD3059 (thermotolerant) and BT-Schomburgk (thermosusceptible) at grain-filling stage under HS (32 °C and 40 °C, 1 h). The decrease in photosynthetic rate was observed under HS. Expression analysis of the SS gene at transcript level showed downregulation in both the wheat cvs.HD3059 and BT-Schombugk under HS (32 °C and 40 ºC, 1 h) as compared to the control. Although the downregulation of SS gene transcript expression was less in HD3059 than BT-Schombugk. Both the cultivars showed decrease in starch synthase activity and starch content under HS and the overall content was higher in HD3059, compared to BT-Schomburgk. Higher total amylolytic activity and amylose content were observed in BT-Schomburgk. Scanning electron microscopy (SEM) showed un-structured starch granules under HS. Total antioxidant capacity (TAC) was found higher in HD3059 (14.07 mM FeSO4 gm-1 FW) compared to BT-Schomburgk (8.89 mM FeSO4 gm-1 FW) under HS (40 ºC, 1 h). Findings suggest that HS during grain filling stage had more severe impact on the overall physiochemical properties of the wheat grain. Thus the starch bisynthesis pathway associated gene(s) could be exploit to enhance the yield and quality of wheat under heat stress.

18.
Int J Biol Macromol ; 161: 1029-1039, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32512094

RESUMEN

Heat stress causes oxidative bursts damaging the organelles and nascent proteins. Plants have inherited antioxidant defense system to neutralize the effect of reactive oxygen species. Superoxide dismutase provides first line of defense against the HS by regulating the accumulation of peroxide radicals inside the cells. Here, we report identification and cloning of putative manganese superoxide dismutase (Mn-SOD) gene of ~733 nt from wheat cv. HD2985 through de novo assembly. The gene was observed to localize on Chr 6D with a mitochondrial targeting peptide sequence and iron/manganese domain. We predicted 147 homologs of Mn-SOD in eukaryotes with diverse speciation nodes. A recombinant Mn-SOD protein of ~25.5 kDa was purified through heterologous expression system. Kinetics assay of recombinant protein showed optimum pH of 8.0, optimum temperature of 35 °C and Km and Vmax values of 1.51 µM and 9.45 U/mg proteins, respectively. Maximum expression and activity of Mn-SOD was observed in leaves from Raj3765, as compared to stem and spike during milky-ripe stage under differential HS. In gel activity assay showed the appearance of all the three isoforms of SOD in thermotolerant cv. under HS. Mn-SOD, being active at pivotal position, can be also used as potential biochemical marker in wheat breeding program.


Asunto(s)
Biomarcadores , Respuesta al Choque Térmico , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Termotolerancia , Triticum/fisiología , Secuencia de Aminoácidos , Clonación Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Especificidad de Órganos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia , Temperatura , Termotolerancia/genética
20.
Front Plant Sci ; 11: 918, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670329

RESUMEN

Globally, yellow mosaic disease (YMD) remains a major constraint of mungbean production, and management of this deadly disease is still the biggest challenge. Thus, finding ways to manage YMD including development of varieties possessing resistance against mungbean yellow mosaic virus (MYMV) and mungbean yellow mosaic India virus (MYMIV) is a research priority for mungbean crop. Characterization of YMD resistance using various advanced molecular and biochemical approaches during plant-virus interactions has unfolded a comprehensive network of pathogen survival, disease severity, and the response of plants to pathogen attack, including mechanisms of YMD resistance in mungbean. The biggest challenge in YMD management is the effective utilization of an array of information gained so far, in an integrated manner for the development of genotypes having durable resistance against yellow mosaic virus (YMV) infection. In this backdrop, this review summarizes the role of various begomoviruses, its genomic components, and vector whiteflies, including cryptic species in the YMD expression. Also, information about the genetics of YMD in both mungbean and blackgram crops is comprehensively presented, as both the species are crossable, and same viral strains are also found affecting these crops. Also, implications of various management strategies including the use of resistance sources, the primary source of inoculums and vector management, wide-hybridization, mutation breeding, marker-assisted selection (MAS), and pathogen-derived resistance (PDR) are thoroughly discussed. Finally, the prospects of employing various powerful emerging tools like translational genomics, and gene editing using CRISPR/Cas9 are also highlighted to complete the YMD management perspective in mungbean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA