RESUMEN
Recently, the world is experiencing a shift from petroleum refineries to biorefineries due to fossil fuel depletion and environmental concerns. To achieve sustainable development of biorefineries and other components of the biofuel production process, eco-friendly and cost-effective approaches are necessary. Therefore, lignocellulosic biomass (LCB) must be exploited in biorefineries for the generation of a broad spectrum of products. The complex structure of LCB prevents its direct saccharification by enzymatic means, so pretreatment is necessary. There are several pretreatment technologies for disrupting the lignocellulosic structure, but hydrothermal pretreatment is the leading pretreatment technology for recovering hemicellulose fraction with a low number of inhibitors and an increased amount of cellulose. The severity of hydrothermal pretreatment plays a principal role in affecting cellulose, hemicellulose, and lignin structure. A detailed account of microwave-assisted hydrothermal pretreatment technologies and the cost-effectiveness, eco-friendliness, and upcoming challenges of this technology for commercialization with the probable solution is presented.
Asunto(s)
Biocombustibles , Lignina , Lignina/química , Biomasa , CelulosaRESUMEN
In recent years, the unnecessary overuse of antibiotics has increased globally, resulting in antibiotic contamination of water, which has become a significant environmental concern. This study aims to examine the adsorption behavior of antibiotics (Tetracycline TC, Ciprofloxacin CIP, Ibuprofen IBP, and Sulfamethoxazole SMX) onto H3PO4-activated sunflower seed husk biochar (PSF). The results demonstrated that H3PO4 could enhance the specific surface area (378.8 m2/g) and create a mesoporous structure of biochar. The adsorption mechanism was investigated using kinetic models, isotherms, and thermodynamics. The maximum adsorption capacities (qmax) of TC, CIP, SMX, and IBP are 429.3, 361.6, 251.3, and 251.1 mg g-1, respectively. The adsorption mechanism of antibiotics on PSF was governed by complex mechanisms, including chemisorption, external diffusion, and intraparticle diffusion. This research provides an environmentally friendly method for utilizing one of the agricultural wastes for the removal of a variety of antibiotics from the aquatic environment.
Asunto(s)
Helianthus , Contaminantes Químicos del Agua , Antibacterianos , Adsorción , Carbón Orgánico/química , Sulfametoxazol , Contaminantes Químicos del Agua/análisis , CinéticaRESUMEN
The goal of this research was to study the role of excess charges in regulating biohydrogen production from Paulownia. The excess charges were generated through charge compensation in SnO2 nanocatalysts by Zn doping. The maximum hydrogen yield of 335 mL was observed at 8%Zn doping with a concentration of 150 mg/L, 47% higher as compared to standard sample. It was observed that the hydrogen production rate increased with Zn doping and the highest value (77 mL/h) was observed for 8%Zn at 24 h. The decrease in the total amount of byproducts (2.52 g/L from 4.28 g/L) at 8% Zn indicates an increase in bacterial metabolism. The lowest value of oxidation-reduction potential (-525 mV) at 24 h for 8%Zn confirms that Zn doping provides excessive electrons to the fermentative medium which helps the bacteria to transfer electrons faster during the redox reaction, hence, enhancing the enzymatic process and eventually hydrogen production.
Asunto(s)
Hidrógeno , Lignina , Biomasa , Fermentación , Hidrógeno/metabolismo , Lignina/metabolismo , ZincRESUMEN
In this study, the brown algae Sargassum Hemiphyllum was used as a carbon source for synthesis of magnetic porous biochar via pyrolyzing at high temperature and and doping iron oxide particles (Fe-BAB). Cu (II) species were removed from aqueous solutions using Fe-BAB under various conditions. Fe-BAB demonstrated superior Cu (II) adsorption (105.3 mg g-1) compared to other biochars. On the surface of Fe-BAB, there are several oxygen-containing functional groups, such as -COOH and -OH, which are likely responsible for the excellent heavy metal removal performance. By utilizing magnet, the Fe-BAB can be conveniently separated from the solution and ready for further usage. Multi-adsorption mechanisms were responsible for Cu adsorption on Fe-BAB. Using the magnetic algal biochar for heavy metal removal is feasible due to its high adsorption efficiency and simplicity of separation.
Asunto(s)
Metales Pesados , Sargassum , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisisRESUMEN
Biorefining of lignocellulosic biomass is a relatively new concept but it has strong potential to develop and partially replace the fossil derived fuels and myriad of value products to subsequently reduce the greenhouse gas emissions. However, the energy and cost intensive process of releasing the entrapped fermentable sugars is a major challenge for its commercialization. Various factors playing a detrimental role during enzymatic hydrolysis of biomass are inherent recalcitrance of lignocellulosic biomass, expensive enzymes, sub-optimal enzyme composition, lack of synergistic activity and enzyme inhibition caused by various inhibitors. The current study investigated the mechanism of enzyme inhibition during lignocellulosic biomass saccharification especially at high solid loadings. These inhibition factors are categorized into physio-chemical factors, water-soluble and -insoluble enzyme inhibitors, oligomers and enzyme-lignin binding. Furthermore, different approaches are proposed to alleviate the challenges and improve the enzymatic hydrolysis efficiency such as supplementation with surfactants, synergistic catalytic/non-catalytic proteins, and bioprocess modifications.
Asunto(s)
Lignina , Biomasa , Fermentación , Hidrólisis , Lignina/metabolismoRESUMEN
Tremendous population growth and industrialization have increased energy consumption unprecedentedly. The depletion of fossil-based energy supplies necessitates the exploration of solar, geothermal, wind, hydrogen, biodiesel, etc. as a clean and renewable energy source. Most of these energy sources are intermittent, while bioelectricity, biodiesel, and biohydrogen can be produced using abundantly available organic wastes regularly. The production of various energy resources requires materials that are costly and affect the applicability at a large scale. Biomass-derived materials (biochar) are getting attention in the field of bioenergy due to their simple method of synthesis, high surface area, porosity, and availability of functional groups for easy modification. Biochar synthesis using various techniques is discussed and their use as an electrode (anodic/cathodic) in a microbial fuel cell (MFC), catalysts in transesterification, and anaerobic digestion for energy production are reviewed. Renewable energy production using biochar would be a sustainable approach to create an energy secure world.
Asunto(s)
Fuentes de Energía Bioeléctrica , Biocombustibles , Biomasa , Carbón Orgánico , Hidrógeno/análisis , Energía RenovableRESUMEN
Freshwater demand is rising worldwide due to largely increasing population and industrialization. Latest focus is to explore the Ocean and saline effluent from industries to produce freshwater in a sustainable way via algal desalination. Current physicochemical desalination technology is not only an energy-intensive and expensive process but also gives severe environmental impact from brine and GHGs emissions. Therefore, it is neither environmentally-friendly nor feasible to countries with limited resources. Biodesalination could be an attractive technology with recent breakthroughs in algal bioprocess with fast growth rate under highly saline conditions to effectively remove salts optimally 50-67% from saline water. Algal desalination mainly occurs through biosorption and bioaccumulation which governs by biotic and abiotic factors e.g., strain, temperature, pH, light and nutrients etc. This review provides a current scenario of this novel technology by an in-depth assessment of technological advancement, social impact, possible risks and scope for policy implications.
Asunto(s)
Microalgas , Purificación del Agua , Agua DulceRESUMEN
Waste biomass of Lactobacillus brevis obtained from in vivo γ-aminobutyric acid (GABA) production was used for value-addition. This study aims to extract glutamate decarboxylase (GAD) and characterize it for in vitro GABA production. Extracted GAD showed an excellent activity for in vitro GABA production. 52 W ultrasonic output was best in crude GAD extraction which was purified by Q HP anion-exchange column followed by Superdex-200 colloid separation column. The molecular weight of the purified GAD was determined to be ~53 kDa, and the Km value for L-glutamic acid was calculated ~7.65 mM. Pyridoxal 5'-phosphate (PLP) acted as the best cofactor for GAD. Optimum temperature and PLP dosing were deferring for crude and purified enzyme forms which respectively exhibited at 45°C, 55°C, 200 µmol and 20 µmol whereas optimum pH was the same at 4.5. GAD finds applications in food industries hence its detailed characterization would be promising for commercial exploitations.
Asunto(s)
Glutamato Descarboxilasa , Levilactobacillus brevis , Biomasa , Ácido Glutámico , Ácido gamma-AminobutíricoRESUMEN
Lytic polysaccharide monooxygenases (LPMOs) emerged a decade ago and have been described as biomass deconstruction boosters as they play an extremely important role in unravelling the enzymatic biomass hydrolysis scheme. These are oxidative enzymes requiring partners to donate electrons during catalytic action on cellulose backbone. Commercial cellulase preparations are mostly from the robust fungal sources, hence LPMOs from fungi (AA9) have been discussed. Characterisation of LPMOs suffers due to multiple complications which has been discussed and challenges in detection of LPMOs in secretomes has also been highlighted. This review focuses on the significance of LPMOs on biomass hydrolysis due to which it has become a key component of cellulolytic cocktail available commercially for biomass deconstruction and its routine analysis challenge has also been discussed. It has also outlined a few key points that help in expressing catalytic active recombinant AA9 LPMOs.
Asunto(s)
Proteínas Fúngicas , Oxigenasas de Función Mixta , Lignina , PolisacáridosRESUMEN
Waste valorization using biological methods for value addition as well as environmental management is becoming popular approach for sustainable development. The present review addresses the availability of blueberry crop residues (BCR), applications of this feedstock in bioprocess for obtaining range of value-added products, to offer economic viability, business development and market potential, challenges and future perspectives. To the best of our knowledge, this is the first article addressing the blueberry waste valorization for a sustainable circular bioeconomy. Furthermore, it covers the information on the alternative BCR valorization methods and production of biochar for environmental management through removal or mitigation of organic and inorganic pollutants from contaminated sites. The review also discusses the ample opportunities of strategic utilization of BCR to offer solutions for environmental sustenance, covers the emerging trends to produce multi-products and techno-economic prospective for sustainable agronomy.
Asunto(s)
Biocombustibles , Arándanos Azules (Planta) , Estudios Prospectivos , ReciclajeRESUMEN
In this review investigate the apple orchard waste (AOW) is potential organic resources to produce multi-product and there sustainable interventions with biorefineries approaches to assesses the apple farm industrial bioeconomy. The thermochemical and biological processes like anaerobic digestion, composting and , etc., that generate distinctive products like bio-chemicals, biofuels, biofertilizers, animal feed and biomaterial, etc can be employed for AOW valorization. Integrating these processes can enhanced the yield and resource recovery sustainably. Thus, employing biorefinery approaches with allied different methods can link to the progression of circular bioeconomy. This review article mainly focused on the different biological processes and thermochemical that can be occupied for the production of waste to-energy and multi-bio-product in a series of reaction based on sustainability. Therefore, the biorefinery for AOW move towards identification of the serious of the reaction with each individual thermochemical and biological processes for the conversion of one-dimensional providences to circular bioeconomy.