RESUMEN
Metal-organic polyhedra (MOPs) can act as elementary structural units for the design of modular porous materials; however, their association with biological systems remains greatly restricted by their typically low stabilities and solubilities in water. Herein, we describe the preparation of novel MOPs bearing either anionic or cationic groups and exhibiting a high affinity for proteins. Simple mixing of the protein bovine serum albumin (BSA) and ionic MOP aqueous solutions resulted in the spontaneous formation of MOP-protein assemblies, in a colloidal state or as solid precipitates depending on the initial mixing ratio. The versatility of the method was further illustrated using two enzymes, catalase and cytochrome c, with different sizes and isoelectric points (pI's) below and above 7. This mode of assembly led to the high retention of catalytic activity and enabled recyclability. Furthermore, the co-immobilization of cytochrome c with highly charged MOPs resulted in a substantial 44-fold increase of its catalytic activity.
Asunto(s)
Citocromos c , Agua , Metales/química , CationesRESUMEN
An efficient water-based purification strategy for metal-organic polyhedra (MOPs) using commercially available centrifugal ultrafiltration membranes was developed. Having a diameter above 3 nm, MOPs were almost fully retained by the filters, while free ligands and other impurities were washed away. MOP retention also enabled efficient counter-ion exchange. This method paves the way for the application of MOPs with biological systems.