Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nano Lett ; 17(3): 1733-1740, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28145723

RESUMEN

Selective killing of cancer cells while minimizing damage to healthy tissues is the goal of clinical radiation therapy. This therapeutic ratio can be improved by image-guided radiation delivery and selective radiosensitization of cancer cells. Here, we have designed and tested a novel trimodal theranostic nanoparticle made of bismuth and gadolinium for on-site radiosensitization and image contrast enhancement to improve the efficacy and accuracy of radiation therapy. We demonstrate in vivo magnetic resonance (MR), computed tomography (CT) contrast enhancement, and tumor suppression with prolonged survival in a non-small cell lung carcinoma model during clinical radiation therapy. Histological studies show minimal off-target toxicities due to the nanoparticles or radiation. By mimicking existing clinical workflows, we show that the bismuth-gadolinium nanoparticles are highly compatible with current CT-guided radiation therapy and emerging MR-guided approaches. This study reports the first in vivo proof-of-principle for image-guided radiation therapy with a new class of theranostic nanoparticles.


Asunto(s)
Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/radioterapia , Bismuto/uso terapéutico , Medios de Contraste/uso terapéutico , Gadolinio/uso terapéutico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Nanopartículas/uso terapéutico , Dióxido de Silicio/uso terapéutico , Células A549 , Adenocarcinoma del Pulmón , Animales , Bismuto/química , Medios de Contraste/química , Gadolinio/química , Humanos , Imagen por Resonancia Magnética , Ratones , Nanopartículas/química , Radioterapia Guiada por Imagen , Dióxido de Silicio/química , Nanomedicina Teranóstica , Tomografía Computarizada por Rayos X
3.
Nano Lett ; 15(11): 7488-96, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26418302

RESUMEN

More than 50% of all cancer patients receive radiation therapy. The clinical delivery of curative radiation dose is strictly restricted by the proximal healthy tissues. We propose a dual-targeting strategy using vessel-targeted-radiosensitizing gold nanoparticles and conformal-image guided radiation therapy to specifically amplify damage in the tumor neoendothelium. The resulting tumor vascular disruption substantially improved the therapeutic outcome and subsidized the radiation/nanoparticle toxicity, extending its utility to intransigent or nonresectable tumors that barely respond to standard therapies.


Asunto(s)
Oro/efectos adversos , Nanopartículas del Metal/efectos adversos , Neoplasias/radioterapia , Neovascularización Patológica/tratamiento farmacológico , Línea Celular Tumoral , Endotelio/efectos de los fármacos , Endotelio/patología , Endotelio/efectos de la radiación , Oro/química , Humanos , Nanopartículas del Metal/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/patología , Neovascularización Patológica/radioterapia , Tolerancia a Radiación/efectos de los fármacos , Radioterapia Guiada por Imagen
6.
Nano Lett ; 14(2): 972-81, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24422585

RESUMEN

Enhanced permeability and retention (EPR) and the (over-) expression of angiogenesis-related surface receptors are key features of tumor blood vessels. As a consequence, EPR-mediated passive and Arg-Gly-Asp (RGD) and Asn-Gly-Arg (NGR) based active tumor targeting have received considerable attention in the last couple of years. Using several different in vivo and ex vivo optical imaging techniques, we here visualized and quantified the benefit of RGD- and NGR-based vascular vs EPR-mediated passive tumor targeting. This was done using ∼ 10 nm sized polymeric nanocarriers, which were either labeled with DY-676 (peptide-modified polymers) or with DY-750 (peptide-free polymers). Upon coinjection into mice bearing both highly leaky CT26 and poorly leaky BxPC3 tumors, it was found that vascular targeting did work, resulting in rapid and efficient early binding to tumor blood vessels, but that over time, passive targeting was significantly more efficient, leading to higher overall levels and to more efficient retention within tumors. Although this situation might be different for larger carrier materials, these insights indicate that caution should be taken not to overestimate the potential of active over passive tumor targeting.


Asunto(s)
Antineoplásicos/administración & dosificación , Nanocápsulas/química , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Oligopéptidos/farmacocinética , Animales , Antineoplásicos/química , Línea Celular Tumoral , Difusión , Humanos , Ratones , Nanocápsulas/administración & dosificación , Nanocápsulas/ultraestructura , Nanocompuestos/química , Nanocompuestos/ultraestructura , Neoplasias Experimentales/patología , Oligopéptidos/química , Tamaño de la Partícula
8.
J Microencapsul ; 28(4): 301-10, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21545321

RESUMEN

The potential of chitosan microparticles as a carrier of doxorubicin for the treatment of visceral leishmaniasis was evaluated by macrophage-mediated drug targeting approach. Cationic charge of doxorubicin was masked by complexing it with dextran sulphate (a poly anion) in order to facilitate its incorporation into cationic chitosan microparticles. Prior to in vitro and in vivo studies, characterization studies were carried out systematically: particle size (∼1.049 µm), surface morphology (fluorescence microscopy - spherical structured microparticles), Fourier transform infrared spectroscopy (to characterize effective cross-linking) and differential scanning calorimetry. In vitro studies were carried out in J774.1 in order to check the effective endocytotic uptake of microparticles by macrophages. In vivo studies were conducted in Syrian golden hamsters as per well-established protocols and the results drawn from in vivo studies displayed substantial reduction in leishmanial parasite load for doxorubicin-encapsulated chitosan microparticles: ∼78.2 ± 10.4%, when compared to the control (free doxorubicin): 33.3 ± 2.4%.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Quitosano/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/farmacología , Leishmaniasis Visceral/tratamiento farmacológico , Macrófagos , Animales , Antibióticos Antineoplásicos/farmacocinética , Línea Celular , Quitosano/farmacocinética , Cricetinae , Doxorrubicina/farmacocinética , Portadores de Fármacos/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Mesocricetus , Ratones
9.
Ultrasound Med Biol ; 46(2): 369-376, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31694771

RESUMEN

A cost-effective method for serial in vivo imaging of tumor microvasculature has been developed. We evaluated acoustic angiography (AA) for visualizing and assessing non-small cell lung tumor (A549) microvasculature in mice before and after tumor vascular disruption by vascular-targeted gold nanoparticles and radiotherapy. Standard B-mode and microbubble-enhanced AA images were acquired at pre- and post-treatment time points. Using these modes, a new metric, 50% vessel penetration depth, was developed to characterize the 3-D spatial heterogeneity of microvascular networks. We observed an increase in tumor perfusion after radiation-induced vascular disruption, relative to control animals. This was also visualized in vessel morphology mode, which revealed a loss in vessel integrity. We found that tumors with poorly perfused vasculature at day 0 exhibited a reduced growth rate over time. This suggested a new method to reduce in-group treatment response variability using pre-treatment microvessel maps to objectively identify animals for study removal.


Asunto(s)
Angiografía/métodos , Medios de Contraste , Imagenología Tridimensional , Nanopartículas del Metal , Microburbujas , Microvasos/diagnóstico por imagen , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Animales , Femenino , Aumento de la Imagen , Ratones , Ultrasonografía/métodos
10.
PLoS One ; 15(7): e0236245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32706818

RESUMEN

We have previously demonstrated that endothelial targeting of gold nanoparticles followed by external beam irradiation can cause specific tumor vascular disruption in mouse models of cancer. The induced vascular damage may lead to changes in tumor physiology, including tumor hypoxia, thereby compromising future therapeutic interventions. In this study, we investigate the dynamic changes in tumor hypoxia mediated by targeted gold nanoparticles and clinical radiation therapy (RT). By using noninvasive whole-body fluorescence imaging, tumor hypoxia was measured at baseline, on day 2 and day 13, post-tumor vascular disruption. A 2.5-fold increase (P<0.05) in tumor hypoxia was measured two days after combined therapy, resolving by day 13. In addition, the combination of vascular-targeted gold nanoparticles and radiation therapy resulted in a significant (P<0.05) suppression of tumor growth. This is the first study to demonstrate the tumor hypoxic physiological response and recovery after delivery of vascular-targeted gold nanoparticles followed by clinical radiation therapy in a human non-small cell lung cancer athymic Foxn1nu mouse model.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas del Metal/uso terapéutico , Hipoxia Tumoral , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Oro/uso terapéutico , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Ratones , Ratones Desnudos , Imagen Óptica/métodos , Hipoxia Tumoral/efectos de los fármacos , Hipoxia Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Phys Med Biol ; 65(21): 21RM02, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32380492

RESUMEN

This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.


Asunto(s)
Nanopartículas del Metal/uso terapéutico , Nanomedicina Teranóstica/métodos , Humanos , Hipertermia Inducida
14.
Sci Rep ; 9(1): 15844, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676822

RESUMEN

Effective drug delivery is restricted by pathophysiological barriers in solid tumors. In human pancreatic adenocarcinoma, poorly-permeable blood vessels limit the intratumoral permeation and penetration of chemo or nanotherapeutic drugs. New and clinically viable strategies are urgently sought to breach the neoplastic barriers that prevent effective drug delivery. Here, we present an original idea to boost drug delivery by selectively knocking down the tumor vascular barrier in a human pancreatic cancer model. Clinical radiation activates the tumor endothelial-targeted gold nanoparticles to induce a physical vascular damage due to the high photoelectric interactions. Active modulation of these tumor neovessels lead to distinct changes in tumor vascular permeability. Noninvasive MRI and fluorescence studies, using a short-circulating nanocarrier with MR-sensitive gadolinium and a long-circulating nanocarrier with fluorescence-sensitive nearinfrared dye, demonstrate more than two-fold increase in nanodrug delivery, post tumor vascular modulation. Functional changes in altered tumor blood vessels and its downstream parameters, particularly, changes in Ktrans (permeability), Kep (flux rate), and Ve (extracellular interstitial volume), reflect changes that relate to augmented drug delivery. The proposed dual-targeted therapy effectively invades the tumor vascular barrier and improve nanodrug delivery in a human pancreatic tumor model and it may also be applied to other nonresectable, intransigent tumors that barely respond to standard drug therapies.


Asunto(s)
Sistemas de Liberación de Medicamentos , Oro , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Angiografía por Resonancia Magnética , Nanopartículas del Metal , Neoplasias Experimentales , Neovascularización Patológica , Imagen Óptica , Animales , Línea Celular Tumoral , Oro/química , Oro/farmacocinética , Oro/farmacología , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo
15.
Front Oncol ; 8: 56, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29594038

RESUMEN

In this study, we investigate the use of multifunctional smart radiotherapy biomaterials (SRBs) loaded with immunoadjuvants for boosting the abscopal effect of local radiotherapy (RT). SRBs were designed similar to currently used inert RT biomaterials, incorporating a biodegradable polymer with reservoir for loading payloads of the immunoadjuvant anti-CD40 monoclonal antibody. Lung (LLC1) tumors were generated both on the right and left flank of each mouse, with the left tumor representing metastasis. The mice were randomized and divided into eight cohorts with four cohorts receiving image-guided RT (IGRT) at 5 Gy and another similar four cohorts at 0 Gy. IGRT and Computed Tomography (CT) imaging were performed using a small animal radiation research platform (SARRP). Tumor volume measurements for both flank tumors and animal survival was assessed over 25 weeks. Tumor volume measurements showed significantly enhanced inhibition in growth for the right flank tumors of mice in the cohort treated with SRBs loaded with CD40 mAbs and IGRT. Results also suggest that the use of polymeric SRBs with CD40 mAbs without RT could generate an immune response, consistent with previous studies showing such response when using anti-CD40. Overall, 60% of mice treated with SRBs showed complete tumor regression during the observation period, compared to 10% for cohorts administered with anti-CD40 mAbs, but no SRB. Complete tumor regression was not observed in any other cohorts. The findings justify more studies varying RT doses and quantifying the immune-cell populations involved when using SRBs. Such SRBs could be developed to replace currently used RT biomaterials, allowing not only for geometric accuracy during RT, but also for extending RT to the treatment of metastatic lesions.

16.
Front Immunol ; 9: 2030, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30245691

RESUMEN

Radiation therapy induces immunogenic cell death, which can theoretically stimulate T cell priming and induction of tumor-specific memory T cell responses, serving as an in situ vaccine. In practice, this abscopal effect is rarely observed. We use two mouse models of pancreatic cancer to show that a single dose of stereotactic body radiation therapy (SBRT) synergizes with intratumoral injection of agonistic anti-CD40, resulting in regression of non-treated contralateral tumors and formation of long-term immunologic memory. Long-term survival was not observed when mice received multiple fractions of SBRT, or when TGFß blockade was combined with SBRT. SBRT and anti-CD40 was so effective at augmenting T cell priming, that memory CD8 T cell responses to both tumor and self-antigens were induced, resulting in vitiligo in long-term survivors.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Antígenos CD40/antagonistas & inhibidores , Antígenos CD40/inmunología , Vacunas contra el Cáncer/inmunología , Neoplasias Pancreáticas/inmunología , Radiación Ionizante , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Evaluación Preclínica de Medicamentos , Femenino , Inmunoterapia , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Terapia Molecular Dirigida , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/terapia , Radiocirugia , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Neuro Oncol ; 18(12): 1601-1609, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27407134

RESUMEN

Drug delivery in the CNS is limited by endothelial tight junctions forming the impermeable blood-brain barrier. The development of new treatment paradigms has previously been hampered by the restrictiveness of the blood-brain barrier to systemically administered therapeutics. With recent advances in stereotactic localization and noninvasive imaging, we have honed the ability to modulate, ablate, and rewire millimetric brain structures to precisely permeate the impregnable barrier. The wide range of focused radiations offers endless possibilities to disrupt endothelial permeability with different patterns and intensity following 3-dimensional coordinates offering a new world of possibilities to access the CNS, as well as to target therapies. We propose a review of the current state of knowledge in targeted drug delivery using noninvasive image-guided approaches. To this end, we focus on strategies currently used in clinics or in clinical trials such as targeted radiotherapy and magnetic resonance guided focused ultrasound, but also on more experimental approaches such as magnetically heated nanoparticles, electric fields, and lasers, techniques which demonstrated remarkable results both in vitro and in vivo. We envision that biodistribution and efficacy of systemically administered drugs will be enhanced with further developments of these promising strategies. Besides therapeutic applications, stereotactic platforms can be highly valuable in clinical applications for interventional strategies that can improve the targetability and efficacy of drugs and macromolecules. It is our hope that by showcasing and reviewing the current state of this field, we can lay the groundwork to guide future research in this realm.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Técnicas Estereotáxicas , Animales , Barrera Hematoencefálica/efectos de la radiación , Permeabilidad Capilar , Humanos , Terapia por Láser/métodos , Magnetoterapia/métodos , Nanopartículas/uso terapéutico , Radiocirugia/métodos , Terapia por Ultrasonido/métodos
19.
Sci Rep ; 6: 34040, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27658637

RESUMEN

As nanoparticle solutions move towards human clinical trials in radiation therapy, the influence of key clinical beam parameters on therapeutic efficacy must be considered. In this study, we have investigated the clinical radiation therapy delivery variables that may significantly affect nanoparticle-mediated radiation dose amplification. We found a benefit for situations which increased the proportion of low energy photons in the incident beam. Most notably, "unflattened" photon beams from a clinical linear accelerator results in improved outcomes relative to conventional "flat" beams. This is measured by significant DNA damage, tumor growth suppression, and overall improvement in survival in a pancreatic tumor model. These results, obtained in a clinical setting, clearly demonstrate the influence and importance of radiation therapy parameters that will impact clinical radiation dose amplification with nanoparticles.

20.
J Control Release ; 238: 103-113, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27423325

RESUMEN

Radiation therapy is a major treatment regimen for more than 50% of cancer patients. The collateral damage induced on healthy tissues during radiation and the minimal therapeutic effect on the organ-of-interest (target) is a major clinical concern. Ultra-small, renal clearable, silica based gadolinium chelated nanoparticles (SiGdNP) provide simultaneous MR contrast and radiation dose enhancement. The high atomic number of gadolinium provides a large photoelectric cross-section for increased photon interaction, even for high-energy clinical radiation beams. Imaging and therapy functionality of SiGdNP were tested in cynomolgus monkeys and pancreatic tumor-bearing mice models, respectively. A significant improvement in tumor cell damage (double strand DNA breaks), growth suppression, and overall survival under clinical radiation therapy conditions were observed in a human pancreatic xenograft model. For the first time, safe systemic administration and systematic renal clearance was demonstrated in both tested species. These findings strongly support the translational potential of SiGdNP for MR-guided radiation therapy in cancer treatment.


Asunto(s)
Gadolinio/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Radioterapia Guiada por Imagen/métodos , Dióxido de Silicio/uso terapéutico , Animales , Daño del ADN/efectos de la radiación , Femenino , Gadolinio/química , Gadolinio/farmacocinética , Rayos Láser , Macaca fascicularis , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Nanopartículas/análisis , Nanopartículas/química , Neoplasias/genética , Neoplasias/patología , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Dióxido de Silicio/química , Dióxido de Silicio/farmacocinética , Nanomedicina Teranóstica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA