Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 77(2): 213-227.e5, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31735641

RESUMEN

Macrophages form a major cell population in the tumor microenvironment. They can be activated and polarized into tumor-associated macrophages (TAM) by the tumor-derived soluble molecules to promote tumor progression and metastasis. Here, we used comparative metabolomics coupled with biochemical and animal studies to show that cancer cells release succinate into their microenvironment and activate succinate receptor (SUCNR1) signaling to polarize macrophages into TAM. Furthermore, the results from in vitro and in vivo studies revealed that succinate promotes not only cancer cell migration and invasion but also cancer metastasis. These effects are mediated by SUCNR1-triggered PI3K-hypoxia-inducible factor 1α (HIF-1α) axis. Compared with healthy subjects and tumor-free lung tissues, serum succinate levels and lung cancer SUCNR1 expression were elevated in lung cancer patients, suggesting an important clinical relevance. Collectively, our findings indicate that the secreted tumor-derived succinate belongs to a novel class of cancer progression factors, controlling TAM polarization and promoting tumorigenic signaling.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , Metástasis de la Neoplasia/patología , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Células HT29 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células MCF-7 , Macrófagos/patología , Ratones Endogámicos C57BL , Células PC-3 , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología
2.
J Biomed Sci ; 29(1): 93, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344992

RESUMEN

Succinate is a tricarboxylic acid (TCA) cycle intermediate normally confined to the mitochondrial matrix. It is a substrate of succinate dehydrogenase (SDH). Mutation of SDH subunits (SDHD and SDHB) in hereditary tumors such as paraganglioma or reduction of SDHB expression in cancer results in matrix succinate accumulation which is transported to cytoplasma and secreted into the extracellular milieu. Excessive cytosolic succinate is known to stabilize hypoxia inducible factor-1α (HIF-1α) by inhibiting prolyl hydroxylase. Recent reports indicate that cancer-secreted succinate enhances cancer cell migration and promotes cancer metastasis by activating succinate receptor-1 (SUCNR-1)-mediated signaling and transcription pathways. Cancer-derived extracellular succinate enhances cancer cell and macrophage migration through SUCNR-1 â†’ PI-3 K â†’ HIF-1α pathway. Extracellular succinate induces tumor angiogenesis through SUCNR-1-mediated ERK1/2 and STAT3 activation resulting in upregulation of vascular endothelial growth factor (VEGF) expression. Succinate increases SUCNR-1 expression in cancer cells which is considered as a target for developing new anti-metastasis drugs. Furthermore, serum succinate which is elevated in cancer patients may be a theranostic biomarker for selecting patients for SUCNR-1 antagonist therapy.


Asunto(s)
Paraganglioma , Ácido Succínico , Humanos , Neovascularización Patológica/genética , Paraganglioma/genética , Paraganglioma/metabolismo , Paraganglioma/patología , Succinatos , Ácido Succínico/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Neoplasias/metabolismo , Metástasis de la Neoplasia , Espacio Extracelular
3.
J Biomed Sci ; 28(1): 74, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749728

RESUMEN

BACKGROUND: Toll-like receptor-2 (TLR2) promotes vascular smooth muscle cell (VSMC) transdifferentiation to chondrocytes and calcification in a p38 MAPK-dependent manner. Vascular 5-methoxytryptophan (5-MTP) is a newly identified factor with anti-inflammatory actions. As 5-MTP targets p38 MAPK for its actions, we postulated that 5-MTP protects against vascular chondrogenesis and calcification. METHODS: High-fat diet-induced advanced atherosclerosis in mice were performed to investigate the effect of 5-MTP on atherosclerotic lesions and calcification. VSMCs were used to determine the role of 5-MTP in VSMC chondrogenic differentiation and calcification. Alizarin red S and Alcian blue staining were used to measure VSMC calcification and chondrogenic differentiation, respectively. RESULTS: 5-MTP was detected in aortic tissues of ApoE-/- mice fed control chow. It was reduced in ApoE-/- mice fed high-fat diet (HFD), but was restored in ApoE-/-Tlr2-/- mice, suggesting that HFD reduces vascular 5-MTP production via TLR2. Intraperitoneal injection of 5-MTP or its analog into ApoE-/- mice fed HFD reduced aortic atherosclerotic lesions and calcification which was accompanied by reduction of chondrogenesis and calcium deposition. Pam3CSK4 (Pam3), ligand of TLR2, induced SMC phenotypic switch to chondrocytes. Pretreatment with 5-MTP preserved SMC contractile proteins and blocked Pam3-induced chondrocyte differentiation and calcification. 5-MTP inhibited HFD-induced p38 MAPK activation in vivo and Pam3-induced p38 MAPK activation in SMCs. 5-MTP suppressed HFD-induced CREB activation in aortic tissues and Pam3-induced CREB and NF-κB activation in SMCs. CONCLUSIONS: These findings suggest that 5-MTP is a vascular arsenal against atherosclerosis and calcification by inhibiting TLR2-mediated SMC phenotypic switch to chondrocytes and the consequent calcification. 5-MTP exerts these effects by blocking p38 MAPK activation and inhibiting CREB and NF-κB transactivation activity.


Asunto(s)
Aterosclerosis/prevención & control , Calcinosis/prevención & control , Condrogénesis , Dieta Alta en Grasa/efectos adversos , Triptófano/análogos & derivados , Animales , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Calcinosis/metabolismo , Calcinosis/fisiopatología , Ratones , Triptófano/metabolismo
4.
J Biomed Sci ; 27(1): 79, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32635910

RESUMEN

5-methoxytryptophan (5-MTP) is an endothelial factor with anti-inflammatory properties. It is synthesized from L-tryptophan via two enzymatic steps: tryptophan hydroxylase-1 (TPH-1) and hydroxyindole O-methyltransferase. Lipopolysaccharide (LPS) and pro-inflammatory cytokines suppress endothelial 5-MTP production by inhibiting TPH-1 expression. 5-MTP protects endothelial barrier function and promotes endothelial repair, while it blocks vascular smooth muscle cell migration and proliferation by inhibiting p38 MAPK activation. 5-MTP controls macrophage transmigration and activation by inhibiting p38 MAPK and NF-κB activation. 5-MTP administration attenuates arterial intimal hyperplasia, defends against systemic inflammation and prevents renal fibrosis in relevant murine models. Serum 5-MTP level is depressed in human sepsis as well as in mice with sepsis-like disorder. It is reduced in chronic kidney disease and acute myocardial infarction in humans. The reported data suggest that serum 5-MTP may be a theranostic biomarker. In summary, 5-MTP represents a new class of tryptophan metabolite which defends against inflammation and inflammation-mediated tissue damage and fibrosis. It may be a valuable lead compound for developing new drugs to treat complex human inflammatory disorders.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/prevención & control , Triptófano/análogos & derivados , Lesiones del Sistema Vascular/prevención & control , Animales , Humanos , Ratones , Triptófano/farmacología
5.
Arterioscler Thromb Vasc Biol ; 39(3): 432-445, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30626205

RESUMEN

Objective- Vascular smooth muscle cell (VSMC) transformation to an osteochondrogenic phenotype is an initial step toward arterial calcification, which is highly correlated with cardiovascular disease-related morbidity and mortality. TLR2 (Toll-like receptor 2) plays a pathogenic role in the development of vascular diseases, but its regulation in calcification of arteries and VSMCs remains unclear. We postulate that TLR2-mediated inflammation participates in mediating atherosclerotic arterial calcification and VSMC calcification. Approach and Results- We found that ApoE-/- Tlr2-/- genotype in mice suppressed high-fat diet-induced atherosclerotic plaques formation during initiation but progressively lost its preventative capacity, compared with ApoE-/- mice. However, TLR2 deficiency prohibited high-fat diet-induced advanced atherosclerotic calcification, chondrogenic metaplasia, and OPG (osteoprotegerin) downregulation in the calcified lesions. Incubation of VSMCs in a calcifying medium revealed that TLR2 agonists significantly increased VSMC calcification and chondrogenic differentiation. Furthermore, TLR2 deficiency suppressed TLR2 agonist-mediated VSMC chondrogenic differentiation and consequent calcification, which were triggered via the concerted actions of IL (interleukin)-6-mediated RANKL (receptor activator of nuclear factor κB ligand) induction and OPG suppression. Inhibition experiments with pharmacological inhibitors demonstrated that IL-6-mediated RANKL induction is signaled by p38 and ERK1/2 (extracellular signal-regulated kinase 1/2) pathways, whereas the OPG is suppressed via NF-κB (nuclear factor κB) dependent signaling mediated by ERK1/2. Conclusions- We concluded that on ligand binding, TLR2 activates p38 and ERK1/2 signaling to selectively modulate the upregulation of IL-6-mediated RANKL and downregulation of OPG. These signaling pathways act in concert to induce chondrogenic transdifferentiation of VSMCs, which in turn leads to vascular calcification during the pathogenesis of atherosclerosis.


Asunto(s)
Aterosclerosis/patología , Calcinosis/metabolismo , Calcinosis/patología , Condrogénesis/fisiología , Interleucina-6/fisiología , Sistema de Señalización de MAP Quinasas , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Osteoprotegerina/biosíntesis , Ligando RANK/biosíntesis , Receptor Toll-Like 2/fisiología , Animales , Enfermedades de la Aorta/etiología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/prevención & control , Apolipoproteínas E/deficiencia , Aterosclerosis/etiología , Aterosclerosis/genética , Aterosclerosis/prevención & control , Calcinosis/genética , Células Cultivadas , Colesterol en la Dieta/toxicidad , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/toxicidad , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Osteoprotegerina/genética , Ligando RANK/genética , Distribución Aleatoria
6.
J Biol Chem ; 293(28): 11131-11142, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29794137

RESUMEN

5-Methoxytryptophan (5-MTP) is a tryptophan metabolite with recently discovered anti-inflammatory and tumor-suppressing activities. Its synthesis is catalyzed by a hydroxyindole O-methyltransferase (HIOMT)-like enzyme. However, the exact identity of this HIOMT in human cells remains unclear. Human HIOMT exists in several alternatively spliced isoforms, and we hypothesized that 5-MTP-producing HIOMT is a distinct isoform. Here, we show that human fibroblasts and cancer cells express the HIOMT298 isoform as contrasted with the expression of the HIOMT345 isoform in pineal cells. Sequencing analysis of the cloned isoforms revealed that HIOMT298 is identical to the sequence of a previously reported truncated HIOMT isoform. Of note, HIOMT298 expression was reduced in cancer cells and tissues. Stable transfection of A549 cancer cells with HIOMT298 restored HIOMT expression to normal levels, accompanied by 5-MTP production. Furthermore, HIOMT298 transfection caused a tryptophan-metabolic switch from serotonin to 5-MTP production. To determine the in vivo relevance of this alteration, we compared growth and lung metastasis of HIOMT298-transfected A549 cells with those of vector- or untransfected A549 cells as controls in a murine xenograft model. Of note, the HIOMT298-transfected A549 cells exhibited slower growth and lower metastasis than the controls. Our findings provide insight into the crucial role of HIOMT298 in 5-MTP production in cells and in inhibiting cancer progression and highlight the potential therapeutic value of 5-MTP for managing cancer.


Asunto(s)
Acetilserotonina O-Metiltransferasa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Serotonina/metabolismo , Triptófano/análogos & derivados , Triptófano/metabolismo , Animales , Apoptosis , Proliferación Celular , Humanos , Masculino , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Environ Toxicol ; 34(7): 814-824, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30919559

RESUMEN

Exposure to ambient particulate matter (PM) is associated with hypertension and cardiovascular diseases. Recently, we reported that exposure to fine and coarse PM caused pulmonary inflammation and pulmonary small arterial remodeling in mice, and osteopontin (OPN) level was elevated following PM exposure. However, in the present study, cotreatment with 5-methoxytryptophan for 4 weeks partially reduced coarse PM-induced pulmonary inflammation without reducing pulmonary OPN secretion or recovery from pulmonary arterial remodeling in mice. Persistent vascular dysfunction may lead to vascular remodeling. Therefore, we further compared the relationship between coarse PM-induced inflammation and vascular dysfunction by exposing mice to PM before and after cessation of PM exposure. Oropharyngeal aspiration of PM for 8 weeks induced pulmonary inflammation and pulmonary small artery remodeling in mice, as well as increased serum C-reactive protein and OPN concentrations and systolic blood pressure (SBP). After the cessation of PM exposure for another 8 weeks, lung inflammation had recovered and vascular remodeling had partially recovered. Elevation of OPN, metalloproteinases (MMPs), and cytokines in bronchioalveolar lavage were significantly reduced. However, PM-induced systemic responses did not recover after the cessation of PM exposure. Notably, not only serum OPN and SBP remained significantly elevated; also, serum endothelin-1, MMP-9, and keratinocyte-derived chemokine concentrations were significantly increased after cessation of PM exposure for another 8 weeks. These data suggested that systemic inflammation and systemic vascular dysfunction might be important in PM-induced elevation of SBP. Furthermore, SBP elevation was persistent after cessation of PM exposure for 8 weeks.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Material Particulado/efectos adversos , Neumonía/fisiopatología , Neumonía/rehabilitación , Contaminantes Atmosféricos/efectos adversos , Animales , Hipertensión/complicaciones , Pulmón/efectos de los fármacos , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Neumonía/complicaciones , Neumonía/patología , Recuperación de la Función , Pruebas de Toxicidad
8.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817202

RESUMEN

Vanadium is a transition metal widely distributed in the Earth's crust, and is a major contaminant in fossil fuels. Its pathological effect and regulation in atherosclerosis remain unclear. We found that intranasal administration of the vanadium derivative NaVO3 significantly increased plasma and urinary vanadium levels and induced arterial lipid accumulation and atherosclerotic lesions in apolipoprotein E-deficient knockout mice (ApoE-/-) murine aorta compared to those in vehicle-exposed mice. This was accompanied by an increase in plasma reactive oxygen species (ROS) and interleukin 6 (IL-6) levels and a decrease in the vascular smooth muscle cell (VSMC) differentiation marker protein SM22α in the atherosclerotic lesions. Furthermore, exposure to NaVO3 or VOSO4 induced cytosolic ROS generation and IL-6 production in VSMCs and promoted VSMC synthetic differentiation, migration, and proliferation. The anti-oxidant N-acetylcysteine (NAC) not only suppresses IL-6 production and VSMC pathological responses including migration and proliferation but also prevents atherosclerosis in ApoE-/- mice. Inhibition experiments with NAC and pharmacological inhibitors demonstrated that NaVO3-induced IL-6 production is signaled by ROS-triggered p38-mediated NF-κB-dependent pathways. Neutralizing anti-IL-6 antibodies impaired NaVO3-mediated VSMC migration and proliferation. We concluded that NaVO3 exposure activates the ROS-triggering p38 signaling to selectively induce NF-κB-mediated IL-6 production. These signaling pathways induce VSMC synthetic differentiation, migration, and proliferation, leading to lipid accumulation and atherosclerosis.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Interleucina-6/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vanadatos/toxicidad , Acetilcisteína/farmacología , Animales , Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/inducido químicamente , Aterosclerosis/patología , Aterosclerosis/veterinaria , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Circ Res ; 119(2): 222-36, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27151398

RESUMEN

RATIONALE: Systemic inflammation has emerged as a key pathophysiological process that induces multiorgan injury and causes serious human diseases. Endothelium is critical in maintaining cellular and inflammatory homeostasis, controlling systemic inflammation, and progression of inflammatory diseases. We postulated that endothelium produces and releases endogenous soluble factors to modulate inflammatory responses and protect against systemic inflammation. OBJECTIVE: To identify endothelial cell-released soluble factors that protect against endothelial barrier dysfunction and systemic inflammation. METHODS AND RESULTS: We found that conditioned medium of endothelial cells inhibited cyclooxgenase-2 and interleukin-6 expression in macrophages stimulated with lipopolysaccharide. Analysis of conditioned medium extracts by liquid chromatography-mass spectrometry showed the presence of 5-methoxytryptophan (5-MTP), but not other related tryptophan metabolites. Furthermore, endothelial cell-derived 5-MTP suppressed lipopolysaccharide-induced inflammatory responses and signaling in macrophages and endotoxemic lung tissues. Lipopolysaccharide suppressed 5-MTP level in endothelial cell-conditioned medium and reduced serum 5-MTP level in the murine sepsis model. Intraperitoneal injection of 5-MTP restored serum 5-MTP accompanied by the inhibition of lipopolysaccharide-induced endothelial leakage and suppression of lipopolysaccharide- or cecal ligation and puncture-mediated proinflammatory mediators overexpression. 5-MTP administration rescued lungs from lipopolysaccharide-induced damages and prevented sepsis-related mortality. Importantly, compared with healthy subjects, serum 5-MTP level in septic patients was decreased by 65%, indicating an important clinical relevance. CONCLUSIONS: We conclude that 5-MTP belongs to a novel class of endothelium-derived protective molecules that defend against endothelial barrier dysfunction and excessive systemic inflammatory responses.


Asunto(s)
Antiinflamatorios/sangre , Endotelio Vascular/metabolismo , Endotoxemia/sangre , Endotoxemia/prevención & control , Triptófano/análogos & derivados , Anciano , Anciano de 80 o más Años , Animales , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/sangre , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Triptófano/sangre
10.
Clin Sci (Lond) ; 131(15): 1815-1829, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28592554

RESUMEN

Advanced glycation end-products (AGEs) form during oxidative stress, which is increased in diabetes mellitus (DM). Uromodulin is a protein with a renal protective effect, and may be subject to glycation. The implications of uromodulin glycation and AGEs in the urine are not understood. Here, immunoprecipitation and liquid chromatography-mass spectrometry identified glycated uromodulin (glcUMOD) in the urine of 62.5% of patients with diabetic kidney disease (DKD), 20.0% of patients with non-diabetic chronic kidney disease (CKD), and no DM patients with normal renal function or healthy control participants; a finding replicated in a larger cohort of 84 patients with CKD in a case-control study (35 with DM, 49 without). Uromodulin forms high molecular weight polymers that associate with microvesicles and exosomes. Differential centrifugation identified uromodulin in the supernatant, microvesicles, and exosomes of the urine of healthy participants, but only in the supernatant of samples from patients with DKD, suggesting that glycation influences uromodulin function. Finally, the diagnostic and prognostic utility of measuring urinary glcUMOD concentration was examined. Urinary glcUMOD concentration was substantially higher in DKD patients than non-diabetic CKD patients. Urinary glcUMOD concentration predicted DKD status, particularly in patients with CKD stages 1-3a aged <65 years and with urine glcUMOD concentration ≥9,000 arbitrary units (AU). Urinary uromodulin is apparently glycated in DKD and forms AGEs, and glcUMOD may serve as a biomarker for DKD.


Asunto(s)
Nefropatías Diabéticas/orina , Uromodulina/orina , Anciano , Biomarcadores/orina , Estudios de Casos y Controles , Diabetes Mellitus/orina , Femenino , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Curva ROC , Medición de Riesgo/métodos , Índice de Severidad de la Enfermedad
11.
Biochem Biophys Res Commun ; 473(4): 1205-1210, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27091427

RESUMEN

Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Interleucina-6/biosíntesis , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Receptor Toll-Like 4/metabolismo , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Regulación hacia Arriba/fisiología
12.
Int J Mol Sci ; 17(9)2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27563891

RESUMEN

Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration.


Asunto(s)
Interleucina-6/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Movimiento Celular/fisiología , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
J Biomed Sci ; 22: 44, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26100518

RESUMEN

BACKGROUND: The epidermis forms a critical barrier that is maintained by orchestrated programs of proliferation, differentiation, and cell death. Gene mutations that disturb this turnover process may cause skin diseases. Human GASDERMIN A (GSDMA) is frequently silenced in gastric cancer cell lines and its overexpression has been reported to induce apoptosis. GSDMA has also been linked with airway hyperresponsiveness in genetic association studies. The function of GSDMA in the skin was deduced by dominant mutations in mouse gasdermin A3 (Gsdma3), which caused skin inflammation and hair loss. However, the mechanism for the autosomal dominance of Gsdma3 mutations and the mode of Gsdma3's action remain unanswered. RESULTS: We demonstrated a novel function of Gsdma3 in modulating mitochondrial oxidative stress. We showed that Gsdma3 is regulated by intramolecular fold-back inhibition, which is disrupted by dominant mutations in the C-terminal domain. The unmasked N-terminal domain of Gsdma3 associates with Hsp90 and is delivered to mitochondrial via mitochondrial importer receptor Tom70, where it interacts with the mitochondrial chaperone Trap1 and causes increased production of mitochondrial reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and mitochondrial permeability transition (MPT). Overexpression of the C-terminal domain of Gsdma3 as well as pharmacological interventions of mitochondrial translocation, ROS production, and MPT pore opening alleviate the cell death induced by Gsdma3 mutants. CONCLUSIONS: Our results indicate that the genetic mutations in the C-terminal domain of Gsdma3 are gain-of-function mutations which unmask the N-terminal functional domain of Gsdma3. Gsdma3 regulates mitochondrial oxidative stress through mitochondrial targeting. Since mitochondrial ROS has been shown to promote epidermal differentiation, we hypothesize that Gsdma3 regulates context-dependent response of keratinocytes to differentiation and cell death signals by impinging on mitochondria.


Asunto(s)
Homeostasis , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Proteínas/genética , Animales , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/genética , Ratones , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Estructura Terciaria de Proteína/genética , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(33): 13231-6, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22851770

RESUMEN

Cyclooxygenase-2 (COX-2) expression is induced by mitogenic and proinflammatory factors. Its overexpression plays a causal role in inflammation and tumorigenesis. COX-2 expression is tightly regulated, but the mechanisms are largely unclear. Here we show the control of COX-2 expression by an endogenous tryptophan metabolite, 5-methoxytryptophan (5-MTP). By using comparative metabolomic analysis and enzyme-immunoassay, our results reveal that normal fibroblasts produce and release 5-MTP into the extracellular milieu whereas A549 and other cancer cells were defective in 5-MTP production. 5-MTP was synthesized from L-tryptophan via tryptophan hydroxylase-1 and hydroxyindole O-methyltransferase. 5-MTP blocked cancer cell COX-2 overexpression and suppressed A549 migration and invasion. Furthermore, i.p. infusion of 5-MTP reduced tumor growth and cancer metastasis in a murine xenograft tumor model. We conclude that 5-MTP synthesis represents a mechanism for endogenous control of COX-2 overexpression and is a valuable lead for new anti-cancer and anti-inflammatory drug development.


Asunto(s)
Transformación Celular Neoplásica/patología , Ciclooxigenasa 2/metabolismo , Triptófano/análogos & derivados , Acetilserotonina O-Metiltransferasa/metabolismo , Animales , Biocatálisis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica , Ratones , Metástasis de la Neoplasia , Solubilidad/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Triptófano/biosíntesis , Triptófano/metabolismo , Triptófano/farmacología , Triptófano Hidroxilasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Breast Cancer Res ; 16(4): 410, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25060643

RESUMEN

INTRODUCTION: Expression of indoleamine 2,3-dioxygenase (IDO) in primary breast cancer increases tumor growth and metastasis. However, the clinical significance of stromal IDO and the regulation of stromal IDO are unclear. METHODS: Metabolomics and enzyme-linked immunosorbent assay (ELISA) were used to study the effect of cyclooxygenase-2 (COX-2)-overexpressing breast cancer cells on IDO expression in co-cultured human breast fibroblasts. Biochemical inhibitors and short-hairpin RNA (shRNA) were used to clarify how prostaglandin E2 (PGE2) upregulates IDO expression. Associations of stromal IDO with clinicopathologic parameters were tested in tumor specimens. An orthotopic animal model was used to examine the effect of COX-2 and IDO inhibitors on tumor growth. RESULTS: Kynurenine, the metabolite generated by IDO, increases in the supernatant of fibroblasts co-cultured with COX-2-overexpressing breast cancer cells. PGE2 released by cancer cells upregulates IDO expression in fibroblasts through an EP4/signal transducer and activator of transcription 3 (STAT3)-dependent pathway. Conversely, fibroblast-secreted kynurenine promotes the formation of the E-cadherin/Aryl hydrocarbon receptor (AhR)/S-phase kinase-associated protein 2 (Skp2) complex, resulting in degradation of E-cadherin to increase breast cancer invasiveness. The enhancement of motility of breast cancer cells induced by co-culture with fibroblasts is suppressed by the IDO inhibitor 1-methyl-tryptophan. Pathological analysis demonstrates that upregulation of stromal IDO is a poor prognosis factor and is associated with of COX-2 overexpression. Co-expression of cancer COX-2 and stromal IDO predicts a worse disease-free and metastasis-free survival. Finally, COX-2 and IDO inhibitors inhibit tumor growth in vivo. CONCLUSION: Integration of metabolomics and molecular and pathological approaches reveals the interplay between cancer and stroma via COX-2, and IDO promotes tumor progression and predicts poor patient survival.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclooxigenasa 2/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células del Estroma/metabolismo , Adulto , Anciano , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Técnicas de Cocultivo , Ciclooxigenasa 2/genética , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Xenoinjertos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/farmacología , Células MCF-7 , Metaboloma , Metabolómica , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Proteolisis/efectos de los fármacos , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Células del Estroma/efectos de los fármacos
16.
Biomolecules ; 14(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927027

RESUMEN

Microbiota tryptophan metabolism and the biosynthesis of indole derivatives play an important role in homeostasis and pathogenesis in the human body and can be affected by the gut microbiota. However, studies on the interplay between gut microbiota and tryptophan metabolites in patients undergoing dialysis are lacking. This study aimed to identify the gut microbiota, the indole pathway in tryptophan metabolism, and significant functional differences in ESRD patients with regular hemodialysis. We performed the shotgun metagenome sequencing of stool samples from 85 hemodialysis patients. Using the linear discriminant analysis effect size (LEfSe), we examined the composition of the gut microbiota and metabolic features across varying concentrations of tryptophan and indole metabolites. Higher tryptophan levels promoted tyrosine degradation I and pectin degradation I metabolic modules; lower tryptophan levels were associated with glutamate degradation I, fructose degradation, and valine degradation modules. Higher 3-indoxyl sulfate concentrations were characterized by alanine degradation I, anaerobic fatty acid beta-oxidation, sulfate reduction, and acetyl-CoA to crotonyl-CoA. Contrarily, lower 3-indoxyl sulfate levels were related to propionate production III, arabinoxylan degradation, the Entner-Doudoroff pathway, and glutamate degradation II. The present study provides a better understanding of the interaction between tryptophan, indole metabolites, and the gut microbiota as well as their gut metabolic modules in ESRD patients with regular hemodialysis.


Asunto(s)
Microbioma Gastrointestinal , Indoles , Diálisis Renal , Triptófano , Humanos , Triptófano/metabolismo , Indoles/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Fallo Renal Crónico/terapia , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/microbiología , Heces/microbiología , Redes y Vías Metabólicas , Adulto , Metagenoma
17.
J Biol Chem ; 287(6): 4323-34, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22170068

RESUMEN

CpG oligodeoxynucleotide (CpG ODN) cellular uptake into endosomes, the rate-limiting step of Toll-like receptor 9 (TLR9) signaling, is critical in eliciting innate immune responses. ADP-ribosylation factor 6 (ARF6) is a member of the Ras superfamily, which is critical to a wide variety of cellular events including endocytosis. Here, we found that inhibition of ARF6 by dominant mutants and siRNA impaired CpG ODN-mediated responses, whereas cells expressing the constitutively active ARF6 mutant enhanced CpG ODN-induced cytokine production. Inhibition of ARF6 impaired TLR9 trafficking into endolysosomes, thereby inhibiting proceed functional cleavage of TLR9. Additional studies showed that CpG ODN uptake was increased in ARF6-activated cells but impaired in ARF6-defective cells. Furthermore, cells pretreated with CpG ODN but not GpC ODN had increased CpG ODN uptake due to CpG ODN-induced ARF6 activity. Further studies with ARF6-defective and ARF6-activated cells demonstrated that class III phosphatidylinositol 3-kinases (PI3K) was required for downstream ARF6 regulation of CpG ODN uptake. Together, our findings demonstrate that a novel class III PI3K-ARF6 axis pathway mediates TLR9 signaling by regulating the cellular uptake of CpG ODN.


Asunto(s)
Factores de Ribosilacion-ADP/inmunología , Inmunidad Innata/fisiología , Transducción de Señal/inmunología , Receptor Toll-Like 9/inmunología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activación Enzimática/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Mutación , Oligodesoxirribonucleótidos/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 32(11): 2751-60, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22995520

RESUMEN

OBJECTIVE: Migration of vascular smooth muscle cells (VSMCs) from the media into intima contributes to the development of atherosclerosis. Gene deletion experiments implicate a role for toll-like receptor 2 (TLR2) in atherogenesis. However, the underlying mechanisms remain unclear. We postulate that TLR2 promotes VSMC migration by enhancing interleukin (IL)-6 production. METHODS AND RESULTS: Migration assays revealed that TLR2 agonists promoted VSMC migration but not cell proliferation or viability. TLR2 deficiency or inhibition of TLR2 signaling with anti-TLR2 antibody suppressed TLR2 agonist-induced VSMC migration and IL-6 production, which was mediated via p38 mitogen-associated protein kinase and extracellular signal-regulated kinase 1/2 signaling pathways. Neutralizing anti-IL-6 antibodies impaired TLR2-mediated VSMC migration and formation of filamentous actin fiber and lamellipodia. Blockade of p38 mitogen-associated protein kinase or extracellular signal-regulated kinase 1/2 activation inhibited TLR2 agonist pam3CSK4-induced phosphorylation of cAMP response element-binding protein, which regulates IL-6 promoter activity through the cAMP response element site. Moreover, cAMP response element-binding protein small interfering RNA inhibited pam3CSK4-induced IL-6 production and VSMC migration. Additionally, Rac1 small interfering RNA inhibited pam3CSK4-induced VSMC migration but not IL-6 production. CONCLUSIONS: Our results suggest that on ligand binding, TLR2 activates p38 mitogen-associated protein kinase and extracellular signal-regulated kinase 1/2 signaling in VSMCs. These signaling pathways act in concert to activate cAMP response element-binding protein and subsequent IL-6 production, which in turn promotes VSMC migration via Rac1-mediated actin cytoskeletal reorganization.


Asunto(s)
Aterosclerosis/metabolismo , Quimiotaxis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Interleucina-6/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Relación Dosis-Respuesta a Droga , Interleucina-6/antagonistas & inhibidores , Interleucina-6/genética , Ligandos , Lipopéptidos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/inmunología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/inmunología , Miocitos del Músculo Liso/patología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Transducción de Señal , Fibras de Estrés/metabolismo , Factores de Tiempo , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
19.
Comput Struct Biotechnol J ; 20: 6458-6466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467587

RESUMEN

Various groups of antihypertensive drugs targeting different pathways have been developed; however, the pharmacometabolic responses to these drugs have rarely been compared to elucidate the common pathway of blood pressure regulation. Here, we performed a comparative multi-dimensional pharmacometabolic study on the four major lines of antihypertensive drugs, namely angiotensin-converting enzyme inhibitors (ACEis), angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs), and diuretics (DIURs), through ultra-performance liquid chromatography coupled to quantum time-of-flight mass spectrometry. Two hundred fifty patients with young-onset hypertension, who were equally divided among five study groups: non-medicated, ACEi, ARB, CCB, and DIUR groups, were recruited. In a metabolome-wide association study conducted through analysis of covariance, 37 molecular features significantly associated with pharmacometabolic responses to antihypertensive drugs were identified. One-third of these features were shared by multiple medications. ACEis, ARBs, and DIURs shared more features than CCB, partially reflecting that ACEis, ARBs, and DIURs affect the renin-angiotensin-aldosterone system. Thirteen molecular features were consistently identified by all four models of the analysis of covariance. A tandem mass spectrometry (or MS/MS) experiment was performed to decipher the chemical structure of these 13 molecular features, including ARB-associated lysophosphatidylcholine (P4135), CCB-associated diacylglycerol(15:0/18:2) (P1175), and DIUR-associated oleamide (P1516). In addition, diacylglycerol(15:0/14:2) (P408) was significantly associated with the pharmacometabolic response to all four antihypertensive drugs. The identified metabolites provide insights into the mechanisms of blood pressure regulation and potential predictive markers of pharmacometabolic responses to antihypertensive drugs.

20.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34771474

RESUMEN

5-methoxytryptophan (5-MTP) is a recently discovered tryptophan (Trp) metabolite with anti-inflammatory and tumor-suppressing actions. Its synthesis is catalyzed by hydroxyindole O-methyltransferase (HIOMT). HIOMT levels were reported to be decreased in some patients with colorectal, pancreatic and breast cancer. It is unclear whether tissue HIOMT levels is altered in hepatocellular carcinoma (HCC). It is also unclear whether serum 5-MTP concentration is influenced by HCC. In this study, 150 HCC and adjacent normal liver tissues and serum samples were obtained from the HCC biobank established by a prospective multicenter study. Serum samples from 47 healthy subjects were included as a reference. HIOMT mRNA was measured by real time PCR. Serum 5-MTP and selected Trp metabolites were analyzed by quantitative LC-MS. HCC tissue HIOMT mRNA levels adjusted for adjacent normal tissue HIOMT mRNA levels was associated with overall and relapse-free (RF) survival. Combined serum 5-MTP or tissue HIOMT mRNA and serum kynurenine (Kyn) analysis predicted prolonged overall and RF survival following liver resection. A high serum 5-MTP or tissue HIOMT mRNA and low serum Kyn is associated with long-term survival. In conclusion, tumor tissue HIOMT mRNA and serum 5-MTP are potential biomarkers of HCC, especially when analyzed in combination with serum Kyn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA