Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 79(4): 882-897, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36999536

RESUMEN

BACKGROUND AND AIMS: NASH, characterized by inflammation and fibrosis, is emerging as a leading etiology of HCC. Lipidomics analyses in the liver have shown that the levels of polyunsaturated phosphatidylcholine (PC) are decreased in patients with NASH, but the roles of membrane PC composition in the pathogenesis of NASH have not been investigated. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), a phospholipid (PL) remodeling enzyme that produces polyunsaturated PLs, is a major determinant of membrane PC content in the liver. APPROACH AND RESULTS: The expression of LPCAT3 and the correlation between its expression and NASH severity were analyzed in human patient samples. We examined the effect of Lpcat3 deficiency on NASH progression using Lpcat3 liver-specific knockout (LKO) mice. RNA sequencing, lipidomics, and metabolomics were performed in liver samples. Primary hepatocytes and hepatic cell lines were used for in vitro analyses. We showed that LPCAT3 was dramatically suppressed in human NASH livers, and its expression was inversely correlated with NAFLD activity score and fibrosis stage. Loss of Lpcat3 in mouse liver promotes both spontaneous and diet-induced NASH/HCC. Mechanistically, Lpcat3 deficiency enhances reactive oxygen species production due to impaired mitochondrial homeostasis. Loss of Lpcat3 increases inner mitochondrial membrane PL saturation and elevates stress-induced autophagy, resulting in reduced mitochondrial content and increased fragmentation. Furthermore, overexpression of Lpcat3 in the liver ameliorates inflammation and fibrosis of NASH. CONCLUSIONS: These results demonstrate that membrane PL composition modulates the progression of NASH and that manipulating LPCAT3 expression could be an effective therapeutic for NASH.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Fosfolípidos , Inflamación , Fibrosis , 1-Acilglicerofosfocolina O-Aciltransferasa
2.
Am J Pathol ; 191(1): 108-130, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069717

RESUMEN

Pulmonary mycoses are difficult to treat and detrimental to patients. Fungal infections modulate the lung immune response, induce goblet cell hyperplasia and metaplasia, and mucus hypersecretion in the airways. Excessive mucus clogs small airways and reduces pulmonary function by decreasing oxygen exchange, leading to respiratory distress. The forkhead box protein A2 (FOXA2) is a transcription factor that regulates mucus homeostasis in the airways. However, little is known whether pulmonary mycosis modulates FOXA2 function. Herein, we investigated whether Blastomyces dermatitidis and Histoplasma capsulatum-infected canine and feline lungs and airway epithelial cells could serve as higher animal models to examine the relationships between fungal pneumonia and FOXA2-regulated airway mucus homeostasis. The results indicate that fungal infection down-regulated FOXA2 expression in airway epithelial cells, with concomitant overexpression of mucin 5AC (MUC5AC) and mucin 5B (MUC5B) mucins. Mechanistic studies reveal that B. dermatitidis infection, as well as ß-glucan exposure, activated the Dectin-1-SYK-epidermal growth factor receptor-AKT/extracellular signal-regulated kinase 1/2 signaling pathway that inhibits the expression of FOXA2, resulting in overexpression of MUC5AC and MUC5B in canine airway cells. Further understanding of the role of FOXA2 in mucus hypersecretion may lead to novel therapeutics against excessive mucus in both human and veterinary patients with pulmonary mycosis.


Asunto(s)
Blastomicosis/metabolismo , Histoplasmosis/metabolismo , Enfermedades Pulmonares Fúngicas/metabolismo , Moco/metabolismo , Transducción de Señal/fisiología , Animales , Blastomicosis/patología , Gatos , Modelos Animales de Enfermedad , Perros , Receptores ErbB/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Histoplasma , Histoplasmosis/patología , Enfermedades Pulmonares Fúngicas/patología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinasa Syk/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA