Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 17(3): e1009480, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784371

RESUMEN

Dengue virus (DENV) causes dengue fever and severe hemorrhagic fever in humans and is primarily transmitted by Aedes aegypti and A. albopictus mosquitoes. The incidence of DENV infection has been gradually increasing in recent years due to global urbanization and international travel. Understanding the virulence determinants in host and vector transmissibility of emerging epidemic DENV will be critical to combat potential outbreaks. The DENV serotype 2 (DENV-2), which caused a widespread outbreak in Taiwan in 2015 (TW2015), is of the Cosmopolitan genotype and is phylogenetically related to the virus strain linked to another large outbreak in Indonesia in 2015. We found that the TW2015 virus was highly virulent in type I and type II interferon-deficient mice, with robust replication in spleen, lung, and intestine. The TW2015 virus also had high transmissibility to Aedes mosquitoes and could be effectively spread in a continuous mosquitoes-mouse-mosquitoes-mouse transmission cycle. By making 16681-based mutants carrying different segments of the TW2015 virus, we identified the structural pre-membrane (prM) and envelope (E) genes as key virulence determinants in the host, with involvement in the high transmissibility of the TW2015 virus in mosquitoes. The transmission mouse model will make a useful platform for evaluation of DENV with high epidemic potential and development of new strategies against dengue outbreaks.


Asunto(s)
Culicidae/virología , Virus del Dengue/genética , Virus del Dengue/patogenicidad , Dengue/virología , Insectos Vectores/virología , Virulencia/fisiología , Animales , Modelos Animales de Enfermedad , Genotipo , Ratones
2.
Am J Pathol ; 191(6): 1036-1048, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33753025

RESUMEN

Type I interferon (IFN-I) has a well-known function in controlling viral infections, but its contribution in hepatocyte proliferation and hepatocellular carcinoma (HCC) formation remains unclear. Mice deficient in IFN-α receptor expression in whole mice or only in hepatocytes (Ifnar-/- and IfnarΔliver) were used to investigate the role of IFN-I signaling in cell proliferation and cancer formation in the liver. Ifnar-/- mice were resistant to chemical-induced HCC formation in the absence of infection. The results show that low grade of IFN-I and interferon-stimulated gene were expressed substantially in naïve mouse liver. The low level of IFN-I activation is constantly present in mouse liver after weaning and negatively modulates forkhead box O hepatic expression. The IFN-I signaling can be partially blocked by the clearance of lipopolysaccharide. Mice lacking IFN-I signaling have lower basal proliferation activity and delayed liver regeneration processes after two-thirds partial hepatectomy. The activation of IFN-I signaling on hepatocyte controls glucose homeostasis and lipid metabolism to support proliferation potency and long-term tumorigenesis. Our results reveal a positive role of low-grade IFN-I singling to hepatocyte proliferation and HCC formation by modulating glucose homeostasis and lipid metabolism.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Hepatocitos/metabolismo , Interferón Tipo I/metabolismo , Neoplasias Hepáticas/metabolismo , Regeneración Hepática/fisiología , Animales , Proliferación Celular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/fisiología
3.
J Biol Chem ; 291(37): 19299-311, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27458013

RESUMEN

Innate immune responses are important for pathogen elimination and adaptive immune response activation. However, excess inflammation may contribute to immunopathology and disease progression (e.g. inflammation-associated hepatocellular carcinoma). Immune modulation resulting from pattern recognition receptor-induced responses is a potential strategy for controlling immunopathology and related diseases. This study demonstrates that the mycotoxin patulin suppresses Toll-like receptor- and RIG-I/MAVS-dependent cytokine production through GSH depletion, mitochondrial dysfunction, the activation of p62-associated mitophagy, and p62-TRAF6 interaction. Blockade of autophagy restored the immunosuppressive activity of patulin, and pharmacological activation of p62-dependent mitophagy directly reduced RIG-I-like receptor-dependent inflammatory cytokine production. These results demonstrated that p62-dependent mitophagy has an immunosuppressive role to innate immune response and might serve as a potential immunomodulatory target for inflammation-associated diseases.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Mitofagia/efectos de los fármacos , Micotoxinas/farmacología , Patulina/farmacología , Proteína Sequestosoma-1/inmunología , Animales , Células HEK293 , Humanos , Ratones , Mitofagia/inmunología , Células RAW 264.7
4.
iScience ; 25(8): 104709, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35813875

RESUMEN

Post-translational modifications (PTMs), such as glycosylation and palmitoylation, are critical to protein folding, stability, intracellular trafficking, and function. Understanding regulation of PTMs of SARS-CoV-2 spike (S) protein could help the therapeutic drug design. Herein, the VSV vector was used to produce SARS-CoV-2 S pseudoviruses to examine the roles of the 611LYQD614 and cysteine-rich motifs in S protein maturation and virus infectivity. Our results show that 611LY612 mutation alters S protein intracellular trafficking and reduces cell surface expression level. It also changes S protein glycosylation pattern and decreases pseudovirus infectivity. The S protein contains four cysteine-rich clusters with clusters I and II as the main palmitoylation sites. Mutations of clusters I and II disrupt S protein trafficking from ER-to-Golgi, suppress pseudovirus production, and reduce spike-mediated membrane fusion activity. Taken together, glycosylation and palmitoylation orchestrate the S protein maturation processing and are critical for S protein-mediated membrane fusion and infection.

5.
Front Immunol ; 13: 872047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585971

RESUMEN

An effective COVID-19 vaccine against broad SARS-CoV-2 variants is still an unmet need. In the study, the vesicular stomatitis virus (VSV)-based vector was used to express the SARS-CoV-2 Spike protein to identify better vaccine designs. The replication-competent of the recombinant VSV-spike virus with C-terminal 19 amino acid truncation (SΔ19 Rep) was generated. A single dose of SΔ19 Rep intranasal vaccination is sufficient to induce protective immunity against SARS-CoV-2 infection in hamsters. All the clones isolated from the SΔ19 Rep virus contained R682G mutation located at the Furin cleavage site. An additional S813Y mutation close to the TMPRSS2 cleavage site was identified in some clones. The enzymatic processing of S protein was blocked by these mutations. The vaccination of the R682G-S813Y virus produced a high antibody response against S protein and a robust S protein-specific CD8+ T cell response. The vaccinated animals were protected from the lethal SARS-CoV-2 (delta variant) challenge. The S antigen with resistance to enzymatic processes by Furin and TMPRSS2 will provide better immunogenicity for vaccine design.


Asunto(s)
COVID-19 , Furina , SARS-CoV-2 , Serina Endopeptidasas , Animales , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19 , Furina/genética , Furina/metabolismo , Humanos , Inmunidad Celular , SARS-CoV-2/inmunología , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
6.
Antioxidants (Basel) ; 10(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915987

RESUMEN

Transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) plays a crucial role in regulating the expression of genes participating in cellular defense mechanisms against oxidative or xenobiotic insults. However, there is increasing evidence showing that hyperactivation of NRF2 is associated with chemoresistance in several cancers, including hepatocellular carcinoma (HCC), thus making NRF2 an attractive target for cancer therapy. Another important issue in cancer medication is the adverse effects of these substances on normal cells. Here, we attempted to identify a dual-selective NRF2 regulator that exerts opposite effects on NRF2-hyperactivated HCC cells and normal keratinocytes. An antioxidant response element driven luciferase reporter assay was established in Huh7 and HaCaT cells as high-throughput screening platforms. Screening of 3,000 crude extracts from the Taiwanese Indigenous Plant Extract Library resulted in the identification of Beilschmiedia tsangii (BT) root extract as a dual-selective NRF2 regulator. Multiple compounds were found to contribute to the dual-selective effects of BT extract on NRF2 signaling in two cell lines. BT extract reduced NRF2 protein level and target gene expression levels in Huh7 cells but increased them in HaCaT cells. Furthermore, notable combinatory cytotoxic effects of BT extract and sorafenib on Huh7 cells were observed. On the contrary, sorafenib-induced inflammatory reactions in HaCaT cells were reduced by BT extract. In conclusion, our results suggest that the combination of a selective NRF2 activator and inhibitor could be a practical strategy for fine-tuning NRF2 activity for better cancer treatment and that plant extracts or partially purified fractions could be a promising source for the discovery of dual-selective NRF2 regulators.

7.
Sci Rep ; 10(1): 8929, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488021

RESUMEN

Zika virus (ZIKV) of the flaviviridae family, is the cause of emerging infections characterized by fever, Guillain-Barré syndrome (GBS) in adults and microcephaly in newborns. There exists an urgent unmet clinical need for anti-ZIKV drugs for the treatment of infected individuals. In the current work, we aimed at the promising virus drug target, ZIKV NS3 protease and constructed a Pharmacophore Anchor (PA) model for the active site. The PA model reveals a total of 12 anchors (E, H, V) mapped across the active site subpockets. We further identified five of these anchors to be critical core anchors (CEH1, CH3, CH7, CV1, CV3) conserved across flaviviral proteases. The ZIKV protease PA model was then applied in anchor-enhanced virtual screening yielding 14 potential antiviral candidates, which were tested by in vitro assays. We discovered FDA drugs Asunaprevir and Simeprevir to have potent anti-ZIKV activities with EC50 values 4.7 µM and 0.4 µM, inhibiting the viral protease with IC50 values 6.0 µM and 2.6 µM respectively. Additionally, the PA model anchors aided in the exploration of inhibitor binding mechanisms. In conclusion, our PA model serves as a promising guide map for ZIKV protease targeted drug discovery and the identified 'previr' FDA drugs are promising for anti-ZIKV treatments.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas/métodos , Serina Endopeptidasas/efectos de los fármacos , Proteínas Virales/efectos de los fármacos , Virus Zika/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Modelos Químicos , Simulación del Acoplamiento Molecular , Alineación de Secuencia , Virus Zika/enzimología , Virus Zika/genética
8.
PLoS Negl Trop Dis ; 12(4): e0006417, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29668683

RESUMEN

Zika virus (ZIKV) is primarily transmitted by Aedes mosquitoes in the subgenus Stegomyia but can also be transmitted sexually and vertically in humans. STAT1 is an important downstream factor that mediates type I and II interferon signaling. In the current study, we showed that mice with STAT1 knockout (Stat1-/-) were highly susceptible to ZIKV infection. As low as 5 plaque-forming units of ZIKV could cause viremia and death in Stat1-/- mice. ZIKV replication was initially detected in the spleen but subsequently spread to the brain with concomitant reduction of the virus in the spleen in the infected mice. Furthermore, ZIKV could be transmitted from mosquitoes to Stat1-/- mice back to mosquitoes and then to naïve Stat1-/- mice. The 50% mosquito infectious dose of viremic Stat1-/- mouse blood was close to 810 focus-forming units (ffu)/ml. Our further studies indicated that the activation of macrophages and conventional dendritic cells were likely critical for the resolution of ZIKV infection. The newly developed mouse and mosquito transmission models for ZIKV infection will be useful for the evaluation of antiviral drugs targeting the virus, vector, and host.


Asunto(s)
Aedes/virología , Modelos Animales de Enfermedad , Mosquitos Vectores/virología , Factor de Transcripción STAT1/genética , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Viremia , Infección por el Virus Zika/virología
9.
Infect Agent Cancer ; 12: 42, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28770001

RESUMEN

BACKGROUND: The role of interleukin (IL) 17A in chronic liver diseases had been extensively studied, but the function of IL-17F, which shares a high degree of homology with IL-17A, in the progression of chronic hepatic diseases is poorly understood. The aim of the study was to evaluate the association between IL-17F and liver diseases including, fibrosis and hepatocellular carcinoma (HCC). METHODS: Hepatic tumor samples from both hepatitis C virus (HCV) positive and negative patients (without HBV and HCV, NBNC) were examined with quantitative PCR and immunohistochemistry staining for inflammatory cytokine genes expression. In addition, 250 HCV patients naïve for interferon treatment were also subjected to enzyme-linked immunosorbent Assay (ELISA) for their serum cytokine concentrations. RESULTS: Serum IL-17F concentrations were significantly elevated in HCV patients with severe fibrosis stages. In accordance with serum data, IL-17F expression was also found higher in HCV-associated HCC tissues compared with NBNC HCC tissues at both the mRNA and protein levels. CONCLUSIONS: Our data suggest that IL-17F might be used as a valuable biological marker than IL-17A during chronic fibrosis progression and HCC development in HCV patients.

10.
ACS Med Chem Lett ; 7(12): 1191-1196, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27994762

RESUMEN

Series of N-substituted carbazole analogues bearing an indole ring were synthesized as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents from a molecular hybridization approach. The representative compound 19 showed an MIC = 1 µg/mL against a panel of MRSA clinical isolates as it possessed comparable in vitro activities to that of vancomycin. Moreover, compound 19 also exhibited MIC = 1 µg/mL activities against a recent identified Z172 MRSA strain (vancomycin-intermediate and daptomycin-nonsusceptible phenotype) and the vancomycin-resistant Enterococcus faecalis (VRE) strain. In a mouse model with lethal infection of MRSA (4N216), a 75% survival rate was observed after a single dose of compound 19 was intravenously administered at 20 mg/kg. In light of their equipotent activities against different MRSA isolates and VRE strain, the data underscore the importance of designed hybrid series for the development of new N-substituted carbazoles as potential anti-MRSA agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA