Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32888430

RESUMEN

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Asunto(s)
Enfermedad de Crohn/microbiología , Células Epiteliales/metabolismo , Microbioma Gastrointestinal , Antígenos de Histocompatibilidad Clase II/metabolismo , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Transcriptoma/genética , Animales , Antibacterianos/farmacología , Relojes Circadianos/fisiología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Dieta , Células Epiteliales/citología , Células Epiteliales/inmunología , Citometría de Flujo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Homeostasis , Hibridación Fluorescente in Situ , Interleucina-10/metabolismo , Interleucina-10/farmacología , Intestino Delgado/fisiología , Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodicidad , Linfocitos T/inmunología , Transcriptoma/fisiología
2.
Nat Immunol ; 18(6): 665-674, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459435

RESUMEN

Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.


Asunto(s)
Tejido Adiposo Pardo/inmunología , Macrófagos/inmunología , Proteína 2 de Unión a Metil-CpG/genética , Sistema Nervioso Simpático/metabolismo , Termogénesis/inmunología , Adipocitos Marrones , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/metabolismo , Animales , Axones/metabolismo , Receptor 1 de Quimiocinas CX3C , Metabolismo Energético/inmunología , Citometría de Flujo , Homeostasis , Immunoblotting , Macrófagos/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Norepinefrina/metabolismo , Obesidad/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular/metabolismo , Receptores de Quimiocina/metabolismo , Semaforinas/metabolismo
3.
Cell ; 159(3): 514-29, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417104

RESUMEN

All domains of life feature diverse molecular clock machineries that synchronize physiological processes to diurnal environmental fluctuations. However, no mechanisms are known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific compositional and functional profiles over the course of a day. Ablation of host molecular clock components or induction of jet lag leads to aberrant microbiota diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity. Consequently, jet-lag-induced dysbiosis in both mice and humans promotes glucose intolerance and obesity that are transferrable to germ-free mice upon fecal transplantation. Together, these findings provide evidence of coordinated metaorganism diurnal rhythmicity and offer a microbiome-dependent mechanism for common metabolic disturbances in humans with aberrant circadian rhythms, such as those documented in shift workers and frequent flyers.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Intolerancia a la Glucosa , Microbiota , Animales , Disbiosis/microbiología , Disbiosis/fisiopatología , Conducta Alimentaria , Homeostasis , Humanos , Síndrome Jet Lag/fisiopatología , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/fisiopatología , Ratones , Obesidad/metabolismo , Sueño
4.
Nature ; 600(7890): 713-719, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34880502

RESUMEN

Cigarette smoking constitutes a leading global cause of morbidity and preventable death1, and most active smokers report a desire or recent attempt to quit2. Smoking-cessation-induced weight gain (SCWG; 4.5 kg reported to be gained on average per 6-12 months, >10 kg year-1 in 13% of those who stopped smoking3) constitutes a major obstacle to smoking abstinence4, even under stable5,6 or restricted7 caloric intake. Here we use a mouse model to demonstrate that smoking and cessation induce a dysbiotic state that is driven by an intestinal influx of cigarette-smoke-related metabolites. Microbiome depletion induced by treatment with antibiotics prevents SCWG. Conversely, fecal microbiome transplantation from mice previously exposed to cigarette smoke into germ-free mice naive to smoke exposure induces excessive weight gain across diets and mouse strains. Metabolically, microbiome-induced SCWG involves a concerted host and microbiome shunting of dietary choline to dimethylglycine driving increased gut energy harvest, coupled with the depletion of a cross-regulated weight-lowering metabolite, N-acetylglycine, and possibly by the effects of other differentially abundant cigarette-smoke-related metabolites. Dimethylglycine and N-acetylglycine may also modulate weight and associated adipose-tissue immunity under non-smoking conditions. Preliminary observations in a small cross-sectional human cohort support these findings, which calls for larger human trials to establish the relevance of this mechanism in active smokers. Collectively, we uncover a microbiome-dependent orchestration of SCWG that may be exploitable to improve smoking-cessation success and to correct metabolic perturbations even in non-smoking settings.


Asunto(s)
Microbioma Gastrointestinal , Cese del Hábito de Fumar , Aumento de Peso , Animales , Estudios Transversales , Disbiosis/etiología , Disbiosis/metabolismo , Disbiosis/patología , Ratones , Modelos Animales , Fumar/metabolismo , Fumar/patología
5.
Nature ; 572(7770): 474-480, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31330533

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/microbiología , Esclerosis Amiotrófica Lateral/fisiopatología , Microbioma Gastrointestinal/fisiología , Niacinamida/metabolismo , Akkermansia , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Disbiosis , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Humanos , Longevidad , Masculino , Ratones , Ratones Transgénicos , Niacinamida/biosíntesis , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Tasa de Supervivencia , Simbiosis/efectos de los fármacos , Verrucomicrobia/metabolismo , Verrucomicrobia/fisiología
6.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34426495

RESUMEN

Exercise and circadian biology are closely intertwined with physiology and metabolism, yet the functional interaction between circadian clocks and exercise capacity is only partially characterized. Here, we tested different clock mutant mouse models to examine the effect of the circadian clock and clock proteins, namely PERIODs and BMAL1, on exercise capacity. We found that daytime variance in endurance exercise capacity is circadian clock controlled. Unlike wild-type mice, which outperform in the late compared with the early part of their active phase, PERIODs- and BMAL1-null mice do not show daytime variance in exercise capacity. It appears that BMAL1 impairs and PERIODs enhance exercise capacity in a daytime-dependent manner. An analysis of liver and muscle glycogen stores as well as muscle lipid utilization suggested that these daytime effects mostly relate to liver glycogen levels and correspond to the animals' feeding behavior. Furthermore, given that exercise capacity responds to training, we tested the effect of training at different times of the day and found that training in the late compared with the early part of the active phase improves exercise performance. Overall, our findings suggest that clock proteins shape exercise capacity in a daytime-dependent manner through changes in liver glycogen levels, likely due to their effect on animals' feeding behavior.


Asunto(s)
Proteínas CLOCK/fisiología , Tolerancia al Ejercicio/fisiología , Condicionamiento Físico Animal/fisiología , Factores de Transcripción ARNTL/fisiología , Animales , Proteínas CLOCK/genética , Conducta Alimentaria , Femenino , Luz , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculos/metabolismo , Mutación , Proteínas Circadianas Period/fisiología , Fotoperiodo , Caracteres Sexuales , Factores de Tiempo
8.
Mol Psychiatry ; 26(11): 6149-6158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34349224

RESUMEN

The COVID-19 pandemic poses multiple psychologically stressful challenges and is associated with an increased risk for mental illness. Previous studies have focused on the psychopathological symptoms associated with the outbreak peak. Here, we examined the behavioural and mental-health impact of the pandemic in Israel using an online survey, during the six weeks encompassing the end of the first outbreak and the beginning of the second. We used clinically validated instruments to assess anxiety- and depression-related emotional distress, symptoms, and coping strategies, as well as questions designed to specifically assess COVID-19-related concerns. Higher emotional burden was associated with being female, younger, unemployed, living in high socioeconomic status localities, having prior medical conditions, encountering more people, and experiencing physiological symptoms. Our findings highlight the environmental context and its importance in understanding individual ability to cope with the long-term stressful challenges of the pandemic.


Asunto(s)
COVID-19 , Ansiedad/epidemiología , Depresión/epidemiología , Brotes de Enfermedades , Femenino , Humanos , Pandemias , SARS-CoV-2 , Estrés Psicológico/epidemiología
9.
Nature ; 540(7634): 544-551, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-27906159

RESUMEN

In tackling the obesity pandemic, considerable efforts are devoted to the development of effective weight reduction strategies, yet many dieting individuals fail to maintain a long-term weight reduction, and instead undergo excessive weight regain cycles. The mechanisms driving recurrent post-dieting obesity remain largely elusive. Here we identify an intestinal microbiome signature that persists after successful dieting of obese mice and contributes to faster weight regain and metabolic aberrations upon re-exposure to obesity-promoting conditions. Faecal transfer experiments show that the accelerated weight regain phenotype can be transmitted to germ-free mice. We develop a machine-learning algorithm that enables personalized microbiome-based prediction of the extent of post-dieting weight regain. Additionally, we find that the microbiome contributes to diminished post-dieting flavonoid levels and reduced energy expenditure, and demonstrate that flavonoid-based 'post-biotic' intervention ameliorates excessive secondary weight gain. Together, our data highlight a possible microbiome contribution to accelerated post-dieting weight regain, and suggest that microbiome-targeting approaches may help to diagnose and treat this common disorder.

10.
FASEB J ; 33(4): 5101-5111, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30615487

RESUMEN

Understanding how body weight is regulated at the molecular level is essential for treating obesity. We show that female mice genetically lacking protein tyrosine phosphatase (PTP) receptor type α (PTPRA) exhibit reduced weight and adiposity and increased energy expenditure, and are more resistant to diet-induced obesity than matched wild-type control mice. These mice also exhibit reduced levels of circulating leptin and are leptin hypersensitive, suggesting that PTPRA inhibits leptin signaling in the hypothalamus. Male and female PTPRA-deficient mice fed a high-fat diet were leaner and displayed increased metabolic rates and lower circulating leptin levels, indicating that the effects of loss of PTPRA persist in the obese state. Molecularly, PTPRA down-regulates leptin receptor signaling by dephosphorylating the receptor-associated kinase JAK2, with which the phosphatase associates constitutively. In contrast to the closely related tyrosine phosphatase ε, leptin induces only weak phosphorylation of PTPRA at its C-terminal regulatory site Y789, and this does not affect the activity of PTPRA toward JAK2. PTPRA is therefore an inhibitor of hypothalamic leptin signaling in vivo and may prevent premature activation of leptin signaling, as well as return signaling to baseline after exposure to leptin.-Cohen-Sharir, Y., Kuperman, Y., Apelblat, D., den Hertog, J., Spiegel, I., Knobler, H., Elson, A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo.


Asunto(s)
Hipotálamo/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Receptores de Leptina/metabolismo , Adiposidad/fisiología , Animales , Peso Corporal/fisiología , Femenino , Janus Quinasa 2/metabolismo , Leptina/metabolismo , Masculino , Ratones Noqueados , Obesidad/metabolismo , Fosforilación/fisiología , Condicionamiento Físico Animal/fisiología , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética , Transducción de Señal/fisiología
11.
Nature ; 514(7521): 181-6, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25231862

RESUMEN

Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.


Asunto(s)
Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/microbiología , Microbiota/efectos de los fármacos , Edulcorantes/efectos adversos , Animales , Antibacterianos/farmacología , Aspartame/efectos adversos , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Humanos , Masculino , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Ratones , Ratones Endogámicos C57BL , Sacarina/administración & dosificación , Sacarina/efectos adversos , Sacarosa/efectos adversos , Sacarosa/análogos & derivados , Relación Cintura-Cadera
12.
Mol Ther ; 27(10): 1848-1862, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375359

RESUMEN

Non-alcoholic steatosis and non-alcoholic steatohepatitis (NASH) are liver pathologies characterized by severe metabolic alterations due to fat accumulation that lead to liver damage, inflammation, and fibrosis. We demonstrate that the voltage-dependent anion channel 1 (VDAC1)-based peptide R-Tf-D-LP4 arrested steatosis and NASH progression, as produced by a high-fat diet (HFD-32) in a mouse model, and reversed liver pathology to a normal-like state. VDAC1, a multi-functional mitochondrial protein, regulates cellular metabolic and energetic functions and apoptosis and interacts with many proteins. R-Tf-D-LP4 treatment eliminated hepatocyte ballooning degeneration, inflammation, and liver fibrosis associated with steatosis, NASH, and hepatocarcinoma, and it restored liver pathology-associated enzyme and glucose levels. Peptide treatment affected carbohydrate and lipid metabolism, increasing the expression of enzymes and factors associated with fatty acid transport to mitochondria, enhancing ß-oxidation and thermogenic processes, yet decreasing the expression of enzymes and regulators of fatty acid synthesis. The VDAC1-based peptide thus offers a promising therapeutic approach for steatosis and NASH.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Cirrosis Hepática/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Canal Aniónico 1 Dependiente del Voltaje/química , Animales , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Resultado del Tratamiento , Canal Aniónico 1 Dependiente del Voltaje/genética
13.
Proc Natl Acad Sci U S A ; 113(12): E1673-82, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26862173

RESUMEN

Mitochondria are major suppliers of cellular energy through nutrients oxidation. Little is known about the mechanisms that enable mitochondria to cope with changes in nutrient supply and energy demand that naturally occur throughout the day. To address this question, we applied MS-based quantitative proteomics on isolated mitochondria from mice killed throughout the day and identified extensive oscillations in the mitochondrial proteome. Remarkably, the majority of cycling mitochondrial proteins peaked during the early light phase. We found that rate-limiting mitochondrial enzymes that process lipids and carbohydrates accumulate in a diurnal manner and are dependent on the clock proteins PER1/2. In this conjuncture, we uncovered daily oscillations in mitochondrial respiration that peak during different times of the day in response to different nutrients. Notably, the diurnal regulation of mitochondrial respiration was blunted in mice lacking PER1/2 or on a high-fat diet. We propose that PERIOD proteins optimize mitochondrial metabolism to daily changes in energy supply/demand and thereby, serve as a rheostat for mitochondrial nutrient utilization.


Asunto(s)
Ritmo Circadiano/fisiología , Mitocondrias Hepáticas/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas Circadianas Period/fisiología , Animales , Ritmo Circadiano/genética , Ciclo del Ácido Cítrico , Dieta Alta en Grasa , Grasas de la Dieta/metabolismo , Transporte de Electrón , Ácidos Grasos/metabolismo , Conducta Alimentaria/fisiología , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/enzimología , Actividad Motora , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Proteoma , ARN Mensajero/biosíntesis , ARN Mensajero/genética
14.
Hepatology ; 57(2): 525-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22911490

RESUMEN

UNLABELLED: Sphingolipids are important structural components of cell membranes and act as critical regulators of cell function by modulating intracellular signaling pathways. Specific sphingolipids, such as ceramide, glucosylceramide, and ganglioside GM3, have been implicated in various aspects of insulin resistance, because they have been shown to modify several steps in the insulin signaling pathway, such as phosphorylation of either protein kinase B (Akt) or of the insulin receptor. We now explore the role of the ceramide acyl chain length in insulin signaling by using a ceramide synthase 2 (CerS2) null mouse, which is unable to synthesize very long acyl chain (C22-C24) ceramides. CerS2 null mice exhibited glucose intolerance despite normal insulin secretion from the pancreas. Both insulin receptor and Akt phosphorylation were abrogated in liver, but not in adipose tissue or in skeletal muscle. The lack of insulin receptor phosphorylation in liver correlated with its inability to translocate into detergent-resistant membranes (DRMs). Moreover, DRMs in CerS2 null mice displayed properties significantly different from those in wild-type mice, suggesting that the altered sphingolipid acyl chain length directly affects insulin receptor translocation and subsequent signaling. CONCLUSION: We conclude that the sphingolipid acyl chain composition of liver regulates insulin signaling by modifying insulin receptor translocation into membrane microdomains.


Asunto(s)
Intolerancia a la Glucosa/etiología , Resistencia a la Insulina , Microdominios de Membrana/efectos de los fármacos , Esfingolípidos/metabolismo , Animales , Glucemia/metabolismo , Membrana Celular/efectos de los fármacos , Ceramidas/metabolismo , Intolerancia a la Glucosa/sangre , Insulina/fisiología , Hígado/metabolismo , Microdominios de Membrana/fisiología , Ratones , Oxidorreductasas/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología
15.
EMBO Mol Med ; 16(3): 523-546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374466

RESUMEN

Huntington's disease (HD) is an incurable inherited disorder caused by a repeated expansion of glutamines in the huntingtin gene (Htt). The mutant protein causes neuronal degeneration leading to severe motor and psychological symptoms. Selective downregulation of the mutant Htt gene expression is considered the most promising therapeutic approach for HD. We report the identification of small molecule inhibitors of Spt5-Pol II, SPI-24 and SPI-77, which selectively lower mutant Htt mRNA and protein levels in HD cells. In the BACHD mouse model, their direct delivery to the striatum diminished mutant Htt levels, ameliorated mitochondrial dysfunction, restored BDNF expression, and improved motor and anxiety-like phenotypes. Pharmacokinetic studies revealed that these SPIs pass the blood-brain-barrier. Prolonged subcutaneous injection or oral administration to early-stage mice significantly delayed disease deterioration. SPI-24 long-term treatment had no side effects or global changes in gene expression. Thus, lowering mutant Htt levels by small molecules can be an effective therapeutic strategy for HD.


Asunto(s)
Enfermedad de Huntington , Animales , Ratones , Encéfalo/metabolismo , Cuerpo Estriado , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Fenotipo , ARN Mensajero/genética
16.
J Neurosci ; 32(20): 6906-16, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22593059

RESUMEN

Posttraumatic stress disorder (PTSD) is a debilitating disease, which affects 8-10% of the population exposed to traumatic events. The factors that make certain individuals susceptible to PTSD and others resilient are currently unknown. Corticotropin-releasing factor receptor type 2 (CRFR2) has been implicated in mediating stress coping mechanisms. Here, we use a physiological PTSD-like animal model and an in-depth battery of tests that reflect the symptomology of PTSD to separate mice into subpopulations of "PTSD-like" and "Resilient" phenotypes. PTSD-like mice are hypervigilant, hyperalert, insomniac, have impaired attention and risk assessment, as well as accompanying attenuated corticosterone levels. Intriguingly, PTSD-like mice show long-term robust upregulation of BNST-CRFR2 mRNA levels, and BNST-CRFR2-specific lentiviral knockdown reduces susceptibility to PTSD-like behavior. Additionally, using a BNST mRNA expression array, PTSD-like mice exhibit a general transcriptional attenuation profile, which was associated with upregulation of the BNST-deacetylation enzyme, HDAC5. We suggest PTSD to be a disease of maladaptive coping.


Asunto(s)
Receptores de Hormona Liberadora de Corticotropina/biosíntesis , Núcleos Septales/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Animales , Conducta Animal/fisiología , Corticosterona/sangre , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen/métodos , Técnicas de Silenciamiento del Gen/psicología , Histona Desacetilasas/metabolismo , Ratones , Receptores de Hormona Liberadora de Corticotropina/genética , Resiliencia Psicológica , Trastornos por Estrés Postraumático/sangre , Trastornos por Estrés Postraumático/genética , Transcripción Genética/fisiología , Regulación hacia Arriba
17.
Proc Natl Acad Sci U S A ; 107(18): 8393-8, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20404164

RESUMEN

In response to physiological or psychological challenges, the brain activates behavioral and neuroendocrine systems linked to both metabolic and emotional outputs designed to adapt to the demand. However, dysregulation of integration of these physiological responses to challenge can have severe psychological and physiological consequences, and inappropriate regulation, disproportional intensity, or chronic or irreversible activation of the stress response is linked to the etiology and pathophysiology of mood and metabolic disorders. Using a transgenic mouse model and lentiviral approach, we demonstrate the involvement of the hypothalamic neuropeptide Urocortin-3, a specific ligand for the type-2 corticotropin-releasing factor receptor, in modulating septal and hypothalamic nuclei responsible for anxiety-like behaviors and metabolic functions, respectively. These results position Urocortin-3 as a neuromodulator linking stress-induced anxiety and energy homeostasis and pave the way toward better understanding of the mechanisms that mediate the reciprocal relationships between stress, mood and metabolic disorders.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal , Metabolismo Energético , Homeostasis , Estrés Fisiológico , Urocortinas/metabolismo , Animales , Ansiedad/genética , Vectores Genéticos/genética , Lentivirus/genética , Ratones , Ratones Transgénicos , Urocortinas/genética
18.
PNAS Nexus ; 2(3): pgad068, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37007714

RESUMEN

Store-operated calcium entry (SOCE) is a vital process aimed at refilling cellular internal Ca2+ stores and a primary cellular signaling driver for transcription factors' entry to the nucleus. SOCE-associated regulatory factor (SARAF)/TMEM66 is an endoplasmic reticulum (ER)-resident transmembrane protein that promotes SOCE inactivation and prevents Ca2+ overfilling of the cell. Here, we demonstrate that mice deficient in SARAF develop age-dependent sarcopenic obesity with decreased energy expenditure, lean mass, and locomotion without affecting food consumption. Moreover, SARAF ablation reduces hippocampal proliferation, modulates the activity of the hypothalamus-pituitary-adrenal (HPA) axis, and mediates changes in anxiety-related behaviors. Interestingly, selective SARAF ablation in the hypothalamus's paraventricular nucleus (PVN) neurons reduces old age-induced obesity and preserves locomotor activity, lean mass, and energy expenditure, suggesting a possible central control with a site-specific role for SARAF. At the cellular level, SARAF ablation in hepatocytes leads to elevated SOCE, elevated vasopressin-induced Ca2+ oscillations, and an increased mitochondrial spare respiratory capacity (SPC), thus providing insights into the cellular mechanisms that may affect the global phenotypes. These effects may be mediated via the liver X receptor (LXR) and IL-1 signaling metabolic regulators explicitly altered in SARAF ablated cells. In short, our work supports both central and peripheral roles of SARAF in regulating metabolic, behavioral, and cellular responses.

19.
J Neurosci ; 31(48): 17416-24, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22131403

RESUMEN

Corticotropin-releasing factor receptor type 1 (CRFR1) plays a major role in the regulation of neuroendocrine and behavioral responses to stress and is considered a key mediator of anxiety behavior. The globus pallidus external (GPe), a main relay center within the basal ganglia that is primarily associated with motor and associative functions, is one of the brain nuclei with the highest levels of CRFR1 expression in the rodent brain. However, the role of CRFR1 in the GPe is yet unknown. In the present study, we used a lentiviral-based system of RNA interference to show that knockdown of CRFR1 mRNA expression in the GPe of adult mice induces a significant increase in anxiety-like behavior, as revealed by the light-dark transfer, open-field, and elevated plus-maze tests. This effect was further confirmed by pharmacological administration of the selective CRFR1 antagonist NBI 30775 (1.75 µg/side) directly into the GPe. In the marble-burying test, blockade of CRFR1 in the GPe increased the percentage of marbles buried and the duration of burying behavior. Additionally, we present evidence suggesting that the enkephalin system is involved in the effect of GPe-CRFR1 on anxiety-like behavior. In contrast to the well established anxiogenic role of CRFR1 in the extended amygdala, our data reveal a novel anxiolytic role for CRFR1 in the GPe.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal/fisiología , Globo Pálido/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Ansiedad/genética , Conducta Animal/efectos de los fármacos , Globo Pálido/efectos de los fármacos , Masculino , Ratones , Pirimidinas/farmacología , Interferencia de ARN , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/genética
20.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477806

RESUMEN

The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.


Asunto(s)
Homeostasis/genética , Mutación/genética , Factores de Transcripción/genética , Animales , Autoinmunidad/genética , Cromatina/genética , Disección/métodos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Modelos Animales , Proteína AIRE
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA