Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 30(3): 1103-1116, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31504283

RESUMEN

Auditory spatial tasks induce functional activation in the occipital-visual-cortex of early blind humans. Less is known about the effects of blindness on auditory spatial processing in the temporal-auditory-cortex. Here, we investigated spatial (azimuth) processing in congenitally and early blind humans with a phase-encoding functional magnetic resonance imaging (fMRI) paradigm. Our results show that functional activation in response to sounds in general-independent of sound location-was stronger in the occipital cortex but reduced in the medial temporal cortex of blind participants in comparison with sighted participants. Additionally, activation patterns for binaural spatial processing were different for sighted and blind participants in planum temporale. Finally, fMRI responses in the auditory cortex of blind individuals carried less information on sound azimuth position than those in sighted individuals, as assessed with a 2-channel, opponent coding model for the cortical representation of sound azimuth. These results indicate that early visual deprivation results in reorganization of binaural spatial processing in the auditory cortex and that blind individuals may rely on alternative mechanisms for processing azimuth position.


Asunto(s)
Corteza Auditiva/fisiopatología , Ceguera/fisiopatología , Plasticidad Neuronal , Localización de Sonidos/fisiología , Estimulación Acústica , Adulto , Ceguera/congénito , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Occipital/fisiología , Personas con Daño Visual
2.
Sensors (Basel) ; 21(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921202

RESUMEN

Vision loss has dramatic repercussions on the quality of life of affected people, particularly with respect to their orientation and mobility. Many devices are available to help blind people to navigate in their environment. The EyeCane is a recently developed electronic travel aid (ETA) that is inexpensive and easy to use, allowing for the detection of obstacles lying ahead within a 2 m range. The goal of this study was to investigate the potential of the EyeCane as a primary aid for spatial navigation. Three groups of participants were recruited: early blind, late blind, and sighted. They were first trained with the EyeCane and then tested in a life-size obstacle course with four obstacles types: cube, door, post, and step. Subjects were requested to cross the corridor while detecting, identifying, and avoiding the obstacles. Each participant had to perform 12 runs with 12 different obstacles configurations. All participants were able to learn quickly to use the EyeCane and successfully complete all trials. Amongst the various obstacles, the step appeared to prove the hardest to detect and resulted in more collisions. Although the EyeCane was effective for detecting obstacles lying ahead, its downward sensor did not reliably detect those on the ground, rendering downward obstacles more hazardous for navigation.


Asunto(s)
Calidad de Vida , Personas con Daño Visual , Ceguera , Humanos , Orientación , Reproducibilidad de los Resultados
3.
J Sleep Res ; 28(6): e12866, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31025801

RESUMEN

There is ongoing controversy regarding the role of rapid eye movements (EMs) during rapid eye movement (REM) sleep. One prevailing hypothesis is that EMs during REM sleep are indicative of the presence of visual imagery in dreams. We tested the validity of this hypothesis by measuring EMs in blind subjects and correlating these with visual dream content. Eleven blind subjects, of whom five were congenitally blind (CB) and six late blind (LB), and 11 matched sighted control (SC) subjects participated in this study. All participants underwent full-night polysomnography (PSG) recordings that were staged manually following American Academy of Sleep Medicine (AASM) criteria. Nocturnal EMs were detected automatically using a validated EM detector, and EM activity was represented as "EM coverage" computed as percentage of time with EM in each sleep stage. Frequency of sensory dream elements was measured in dream recall questionnaires over a 30-day period. Both blind groups showed less EM coverage during wakefulness, N1, N2 and REM sleep than did controls. CB and LB subjects did not differ in EM activity. Validation of the detector applied to blind subjects revealed an overall accuracy of 95.6 ± 3.6%. Analysis of dream reports revealed that LB subjects reported significantly more visual dream elements than did CB. Although no specific mechanisms can be revealed in the current study, the quasi absence of nocturnal EMs in LB subjects despite preserved visual dream content does not support the visual scanning of dreams hypothesis. Specifically, results suggest a dissociation between EMs and visual dream content in blind individuals.


Asunto(s)
Sueño REM/fisiología , Personas con Daño Visual/estadística & datos numéricos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Brain Cogn ; 136: 103597, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31491732

RESUMEN

Parkinson's disease (PD) is a progressing neurodegenerative disease predominantly involving the loss of dopamine producing neurons with hallmark symptoms of motor disorders and cognitive, motivational, emotional, and perceptual impairments. Intriguingly, PD can also be connected-often anecdotally-with a sudden burst of artistic creativity, motivation, or changed quality/style of produced art. This has led to growing empirical interest, promising a window into brain function and the unique neurological signature of artists. This topic also fits a growing interest from researchers in other areas, including Alzheimer's or other dementia, which have suggested that specific changes in art production/appraisal may provide a unique basis for therapy, diagnosis, or understanding of these diseases. However, whether PD also shows similar impacts on how we perceive and evaluate art has never been systematically addressed. We compared a cohort of PD patients against age-matched healthy controls, asking participants to rate paintings using scales of liking and beauty and terms pertaining to artworks' formal and conceptual qualities previously designed to provide a rubric for symptom identification. We found no evidence for PD-related differences in liking or beauty. However, PD patients showed higher ratings on assessed "emotionality," potentially relating to the tie between PD, dopamine pathways, and emotion/reward.


Asunto(s)
Emociones/fisiología , Estética , Pinturas , Enfermedad de Parkinson/psicología , Anciano , Creatividad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Motivación/fisiología
5.
J Sleep Res ; 27(1): 120-128, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28621018

RESUMEN

We examined the structure, duration and quality of sleep, including non-rapid eye movement sleep and rapid eye movement sleep, in 11 blind individuals without conscious light perception and 11 age- and sex-matched sighted controls. Because blindness is associated with a greater incidence of free-running circadian rhythms, we controlled for circadian phase by a measure of melatonin onset timing. When circadian rhythm was entrained and melatonin onset occurred at normal times, sleep structure did not differ between blind and sighted individuals. On the other hand, an abnormal timing of the circadian phase, including delayed, shifted and unclassifiable melatonin onsets, led to larger rapid eye movement sleep latencies and increased wake times. No differences were observed for stages of non-rapid eye movement sleep, either between congenital and late blind and sighted individuals, or across the different circadian phases. Moreover, abnormal circadian phases were more common in the blind (n = 5) than the sighted (n = 2) sample. Our findings suggest that the sleep structure of blind individuals depends on entrainment of circadian phase, rather than on the absence of vision.


Asunto(s)
Ceguera/fisiopatología , Ritmo Circadiano/fisiología , Sueño REM/fisiología , Sueño de Onda Lenta/fisiología , Adulto , Biomarcadores/metabolismo , Ceguera/metabolismo , Femenino , Humanos , Masculino , Melatonina/metabolismo , Persona de Mediana Edad , Latencia del Sueño/fisiología
6.
Neural Plast ; 2018: 6120925, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008742

RESUMEN

Because the human brain consumes a disproportionate fraction of the resting body's energy, positron emission tomography (PET) measurements of absolute glucose metabolism (CMRglc) can serve as disease biomarkers. Global mean normalization (GMN) of PET data reveals disease-based differences from healthy individuals as fractional changes across regions relative to a global mean. To assess the impact of GMN applied to metabolic data, we compared CMRglc with and without GMN in healthy awake volunteers with eyes closed (i.e., control) against specific physiological/clinical states, including healthy/awake with eyes open, healthy/awake but congenitally blind, healthy/sedated with anesthetics, and patients with disorders of consciousness. Without GMN, global CMRglc alterations compared to control were detected in all conditions except in congenitally blind where regional CMRglc variations were detected in the visual cortex. However, GMN introduced regional and bidirectional CMRglc changes at smaller fractions of the quantitative delocalized changes. While global information was lost with GMN, the quantitative approach (i.e., a validated method for quantitative baseline metabolic activity without GMN) not only preserved global CMRglc alterations induced by opening eyes, sedation, and varying consciousness but also detected regional CMRglc variations in the congenitally blind. These results caution the use of GMN upon PET-measured CMRglc data in health and disease.


Asunto(s)
Ceguera/metabolismo , Encéfalo/metabolismo , Glucosa/metabolismo , Tomografía de Emisión de Positrones/métodos , Adulto , Ceguera/congénito , Ceguera/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Interpretación Estadística de Datos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Adulto Joven
7.
Neural Plast ; 2016: 6029241, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881120

RESUMEN

Magnetic resonance imaging (MRI) of the human brain has provided converging evidence that visual deprivation induces regional changes in white matter (WM) microstructure. It remains unclear how these changes modify network connections between brain regions. Here we used diffusion-weighted MRI to relate differences in microstructure and structural connectedness of WM in individuals with congenital or late-onset blindness relative to normally sighted controls. Diffusion tensor imaging (DTI) provided voxel-specific microstructural features of the tissue, while anatomical connectivity mapping (ACM) assessed the connectedness of each voxel with the rest of the brain. ACM yielded reduced anatomical connectivity in the corpus callosum in individuals with congenital but not late-onset blindness. ACM did not identify any brain region where blindness resulted in increased anatomical connectivity. DTI revealed widespread microstructural differences as indexed by a reduced regional fractional anisotropy (FA). Blind individuals showed lower FA in the primary visual and the ventral visual processing stream relative to sighted controls regardless of the blindness onset. The results show that visual deprivation shapes WM microstructure and anatomical connectivity, but these changes appear to be spatially dissociated as changes emerge in different WM tracts. They also indicate that regional differences in anatomical connectivity depend on the onset of blindness.


Asunto(s)
Ceguera/patología , Encéfalo/patología , Plasticidad Neuronal , Sustancia Blanca/patología , Adulto , Anisotropía , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
Neural Plast ; 2015: 469750, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25878902

RESUMEN

It is generally acknowledged that congenitally blind individuals develop superior sensory abilities in order to compensate for their lack of vision. Substantial research has been done on somatosensory and auditory sensory information processing of the blind. However, relatively little information is available about compensatory plasticity in the olfactory domain. Although previous studies indicate that blind individuals have superior olfactory abilities, no studies so far have investigated their sense of smell in relation to social and affective communication. The current study compares congenitally blind and normal sighted individuals in their ability to discriminate and identify emotions from body odours. A group of 14 congenitally blind and 14 age- and sex-matched sighted control subjects participated in the study. We compared participants' abilities to detect and identify by smelling sweat from donors who had been watching excerpts from emotional movies showing amusement, fear, disgust, or sexual arousal. Our results show that congenitally blind subjects outperformed sighted controls in identifying fear from male donors. In addition, there was a strong tendency that blind individuals were also better in detecting disgust. Our findings reveal that congenitally blind individuals are better at identifying ecologically important emotions and provide new insights into the mechanisms of social and affective communication in blindness.


Asunto(s)
Ceguera/psicología , Emociones , Miedo , Plasticidad Neuronal , Percepción Olfatoria , Adulto , Afecto , Ceguera/congénito , Discriminación en Psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Odorantes , Sudor
10.
Chem Senses ; 38(6): 509-17, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23667250

RESUMEN

Sight is undoubtedly not only important for food identification and selection but also for the modulation of gustatory sensitivity. We can, therefore, assume that taste sensitivity and eating habits are affected by visual deprivation from birth. We measured taste detection and identification thresholds of the 5 basic tastants in 13 congenitally blind and 13 sighted control subjects. Participants also answered several eating habits questionnaires, including the Food Neophobia Scale, the Food Variety Seeking Tendency Scale, the Intuitive Eating Scale, and the Body Awareness Questionnaire. Our behavioral results showed that compared with the normal sighted, blind subjects have increased thresholds for taste detection and taste identification. This finding is at odds with the superior performance of congenitally blind subjects in several tactile, auditory and olfactory tasks. Our psychometric data further indicate that blind subjects more strongly rely on internal hunger and satiety cues, instead of external contextual or emotional cues, to decide when and what to eat. We suggest that the lower taste sensitivity observed in congenitally blind individuals is due to various blindness-related obstacles when shopping for food, cooking and eating out, all of which contribute to underexpose the gustatory system to a larger variety of taste stimuli.


Asunto(s)
Enfermedades Hereditarias del Ojo/fisiopatología , Enfermedades Hereditarias del Ojo/psicología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/psicología , Miopía/fisiopatología , Miopía/psicología , Ceguera Nocturna/fisiopatología , Ceguera Nocturna/psicología , Gusto , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Umbral Sensorial , Adulto Joven
11.
Proc Natl Acad Sci U S A ; 107(28): 12716-21, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20616025

RESUMEN

Despite the importance of vision for spatial navigation, blind subjects retain the ability to represent spatial information and to move independently in space to localize and reach targets. However, the neural correlates of navigation in subjects lacking vision remain elusive. We therefore used functional MRI (fMRI) to explore the cortical network underlying successful navigation in blind subjects. We first trained congenitally blind and blindfolded sighted control subjects to perform a virtual navigation task with the tongue display unit (TDU), a tactile-to-vision sensory substitution device that translates a visual image into electrotactile stimulation applied to the tongue. After training, participants repeated the navigation task during fMRI. Although both groups successfully learned to use the TDU in the virtual navigation task, the brain activation patterns showed substantial differences. Blind but not blindfolded sighted control subjects activated the parahippocampus and visual cortex during navigation, areas that are recruited during topographical learning and spatial representation in sighted subjects. When the navigation task was performed under full vision in a second group of sighted participants, the activation pattern strongly resembled the one obtained in the blind when using the TDU. This suggests that in the absence of vision, cross-modal plasticity permits the recruitment of the same cortical network used for spatial navigation tasks in sighted subjects.


Asunto(s)
Ceguera/fisiopatología , Tacto/fisiología , Adulto , Ceguera/congénito , Encéfalo/fisiopatología , Corteza Cerebral/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Sistema Nervioso/fisiopatología , Reconocimiento en Psicología , Lengua/fisiopatología , Corteza Visual/fisiopatología
12.
Neurosci Biobehav Rev ; 150: 105165, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37054803

RESUMEN

In recent decades, numerous structural brain imaging studies investigated purported morphometric changes in early (EB) and late onset blindness (LB). The results of these studies have not yielded very consistent results, neither with respect to the type, nor to the anatomical locations of the brain morphometric alterations. To better characterize the effects of blindness on brain morphometry, we performed a systematic review and an Anatomical-Likelihood-Estimation (ALE) coordinate-based-meta-analysis of 65 eligible studies on brain structural changes in EB and LB, including 890 EB, 466 LB and 1257 sighted controls. Results revealed atrophic changes throughout the whole extent of the retino-geniculo-striate system in both EB and LB, whereas changes in areas beyond the occipital lobe occurred in EB only. We discuss the nature of some of the contradictory findings with respect to the used brain imaging methodologies and characteristics of the blind populations such as the onset, duration and cause of blindness. Future studies should aim for much larger sample sizes, eventually by merging data from different brain imaging centers using the same imaging sequences, opt for multimodal structural brain imaging, and go beyond a purely structural approach by combining functional with structural connectivity network analyses.


Asunto(s)
Encéfalo , Lóbulo Occipital , Humanos , Funciones de Verosimilitud , Encéfalo/diagnóstico por imagen , Ceguera , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética
13.
Neuroimage ; 59(4): 3119-27, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22155327

RESUMEN

We used functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) to study the negative blood oxygenation level dependent (BOLD) signal and its underlying blood flow changes in healthy human subjects. This was combined with psychophysiological measurements to test that the negative BOLD signal is associated with functional inhibition. Electrical stimulation of the median nerve at 7 Hz evoked robust negative BOLD signals in the primary somatosensory cortex (SI) ipsilateral to stimulation, and positive BOLD signals in contralateral SI. The negative BOLD signal in ipsilateral SI was accompanied by commensurate decreases in relative regional cerebral blood flow (rCBF). Conjunction analysis of the fMRI and PET data revealed a region in the ipsilateral postcentral gyrus showing overlap of negative BOLD signals and relative rCBF decreases. The current perception threshold (CPT) at the ipsilateral finger during concomitant stimulation of the contralateral median nerve increased significantly, suggesting augmented functional inhibition. Since the CPT in the ipsilateral hallux did not significantly change in response to median nerve stimulation, it is more likely that the CPT-increase for the finger is due to functional inhibition (Kastrup et al., 2008) than to changes in selective attention. In conclusion, our data provide evidence that stimulus-induced reductions in relative rCBF may underlie the negative BOLD signal, which in turn may reflect increments in functional inhibition.


Asunto(s)
Circulación Cerebrovascular , Imagen por Resonancia Magnética , Oxígeno/sangre , Tomografía de Emisión de Positrones , Flujo Sanguíneo Regional , Corteza Somatosensorial/fisiología , Adulto , Estimulación Eléctrica , Femenino , Humanos , Masculino , Nervio Mediano
14.
Neural Plast ; 2012: 852423, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792495

RESUMEN

Behavioural recovery in children who undergo medically required hemispherectomy showcase the remarkable ability of the cerebral cortex to adapt and reorganize following insult early in life. Case study data suggest that lesions sustained early in childhood lead to better recovery compared to those that occur later in life. In these children, it is possible that neural reorganization had begun prior to surgery but was masked by the dysfunctional hemisphere. The degree of neural reorganization has been difficult to study systematically in human infants. Here we present a 20-year culmination of data on our nonhuman primate model (Chlorocebus sabeus) of early-life hemispherectomy in which behavioral recovery is interpreted in light of plastic processes that lead to the anatomical reorganization of the early-damaged brain. The model presented here suggests that significant functional recovery occurs after the removal of one hemisphere in monkeys with no preexisting neurological dysfunctions. Human and primate studies suggest a critical role for subcortical and brainstem structures as well as corticospinal tracts in the neuroanatomical reorganization which result in the remarkable behavioral recovery following hemispherectomy. The non-human primate model presented here offers a unique opportunity for studying the behavioral and functional neuroanatomical reorganization that underlies developmental plasticity.


Asunto(s)
Adaptación Fisiológica/fisiología , Haplorrinos/fisiología , Hemisferectomía , Plasticidad Neuronal/fisiología , Envejecimiento/fisiología , Animales , Conducta Animal/fisiología , Chlorocebus aethiops , Lateralidad Funcional/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Reflejo/fisiología , Movimientos Sacádicos/fisiología , Sensación Térmica/fisiología , Visión Ocular/fisiología , Campos Visuales/fisiología , Percepción Visual/fisiología
15.
Neural Plast ; 2012: 304045, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22779006

RESUMEN

We used functional MRI (fMRI) to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform a tactile-form recognition task with the tongue display unit (TDU). Both groups learned the task at the same rate. In line with our hypothesis, the fMRI data showed that during nonhaptic shape recognition, blind subjects activated large portions of the ventral visual stream, including the cuneus, precuneus, inferotemporal (IT), cortex, lateral occipital tactile vision area (LOtv), and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic tactile shape discrimination. The activation of LOtv by nonhaptic tactile shape processing in blind and sighted subjects adds further support to the notion that this area subserves an abstract or supramodal representation of shape. Together with our previous findings, our data suggest that the segregation of the efferent projections of the primary visual cortex into a dorsal and ventral visual stream is preserved in individuals blind from birth.


Asunto(s)
Estimulación Acústica/métodos , Ceguera/congénito , Ceguera/fisiopatología , Estimulación Luminosa/métodos , Reclutamiento Neurofisiológico/fisiología , Vías Visuales/fisiología , Animales , Ceguera/genética , Chlorocebus aethiops
16.
Front Neurosci ; 16: 850245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418829

RESUMEN

Neuroplasticity following deafness has been widely demonstrated in both humans and animals, but the anatomical substrate of these changes is not yet clear in human brain. However, it is of high importance since hearing loss is a growing problem due to aging population. Moreover, knowing these brain changes could help to understand some disappointing results with cochlear implant, and therefore could improve hearing rehabilitation. A systematic review and a coordinate-based meta-analysis were realized about the morphological brain changes highlighted by MRI in severe to profound hearing loss, congenital and acquired before or after language onset. 25 papers were included in our review, concerning more than 400 deaf subjects, most of them presenting prelingual deafness. The most consistent finding is a volumetric decrease in gray matter around bilateral auditory cortex. This change was confirmed by the coordinate-based meta-analysis which shows three converging clusters in this region. The visual areas of deaf children is also significantly impacted, with a decrease of the volume of both gray and white matters. Finally, deafness is responsible of a gray matter increase within the cerebellum, especially at the right side. These results are largely discussed and compared with those from deaf animal models and blind humans, which demonstrate for example a much more consistent gray matter decrease along their respective primary sensory pathway. In human deafness, a lot of other factors than deafness could interact on the brain plasticity. One of the most important is the use of sign language and its age of acquisition, which induce among others changes within the hand motor region and the visual cortex. But other confounding factors exist which have been too little considered in the current literature, such as the etiology of the hearing impairment, the speech-reading ability, the hearing aid use, the frequent associated vestibular dysfunction or neurocognitive impairment. Another important weakness highlighted by this review concern the lack of papers about postlingual deafness, whereas it represents most of the deaf population. Further studies are needed to better understand these issues, and finally try to improve deafness rehabilitation.

17.
Front Neurosci ; 16: 1010354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340755

RESUMEN

Even though vision is considered the best suited sensory modality to acquire spatial information, blind individuals can form spatial representations to navigate and orient themselves efficiently in space. Consequently, many studies support the amodality hypothesis of spatial representations since sensory modalities other than vision contribute to the formation of spatial representations, independently of visual experience and imagery. However, given the high variability in abilities and deficits observed in blind populations, a clear consensus about the neural representations of space has yet to be established. To this end, we performed a meta-analysis of the literature on the neural correlates of spatial processing and navigation via sensory modalities other than vision, like touch and audition, in individuals with early and late onset blindness. An activation likelihood estimation (ALE) analysis of the neuroimaging literature revealed that early blind individuals and sighted controls activate the same neural networks in the processing of non-visual spatial information and navigation, including the posterior parietal cortex, frontal eye fields, insula, and the hippocampal complex. Furthermore, blind individuals also recruit primary and associative occipital areas involved in visuo-spatial processing via cross-modal plasticity mechanisms. The scarcity of studies involving late blind individuals did not allow us to establish a clear consensus about the neural substrates of spatial representations in this specific population. In conclusion, the results of our analysis on neuroimaging studies involving early blind individuals support the amodality hypothesis of spatial representations.

18.
Cereb Cortex Commun ; 3(4): tgac040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530950

RESUMEN

A major goal of neuroscience is to reveal mechanisms supporting collaborative actions of neurons in local and larger-scale networks. However, no clear overall principle of operation has emerged despite decades-long experimental efforts. Here, we used an unbiased method to extract and identify the dynamics of local postsynaptic network states contained in the cortical field potential. Field potentials were recorded by depth electrodes targeting a wide selection of cortical regions during spontaneous activities, and sensory, motor, and cognitive experimental tasks. Despite different architectures and different activities, all local cortical networks generated the same type of dynamic confined to one region only of state space. Surprisingly, within this region, state trajectories expanded and contracted continuously during all brain activities and generated a single expansion followed by a contraction in a single trial. This behavior deviates from known attractors and attractor networks. The state-space contractions of particular subsets of brain regions cross-correlated during perceptive, motor, and cognitive tasks. Our results imply that the cortex does not need to change its dynamic to shift between different activities, making task-switching inherent in the dynamic of collective cortical operations. Our results provide a mathematically described general explanation of local and larger scale cortical dynamic.

19.
Neuroimage ; 54(2): 1336-43, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20851771

RESUMEN

There is a large body of evidence that the serotonergic system plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) with the serotonin transporter (SERT) tracer [(11)C]DASB to study the relationship between SERT binding in the brain and responses to noxious heat stimulation in a group of 21 young healthy volunteers. Responses to noxious heat stimuli were assessed in a separate psychophysical experiment and included measurements of pain threshold, pain tolerance, and responses to phasic noxious heat stimuli and to a long lasting (7-minute) tonic noxious heat stimulus. PET data were analyzed using both volume-of-interest (VOI) and voxel-based approaches. VOI analysis revealed a significant negative correlation between tonic pain ratings and SERT binding in the hypothalamus (r=-0.59; p=0.008), a finding confirmed by the parametric analysis. The parametric analysis also revealed a negative correlation between tonic pain ratings and SERT binding in the right anterior insula. Measures of regional SERT binding did not correlate with pain threshold or with responses to short phasic suprathreshold phasic heat stimuli. Finally, the VOI analysis revealed a positive correlation between pain tolerance and SERT binding in the hypothalamus (r=0.53; p=0.02) although this was not seen in the parametric analysis. These data extend our earlier observation that cortical 5-HT receptors co-determine responses to tonic but not to phasic pain. The negative correlation between SERT binding in the hypothalamus and insula with tonic pain ratings suggests a possible serotonergic control of the role of these areas in the modulation or in the affective appreciation of pain.


Asunto(s)
Hipotálamo/metabolismo , Dolor/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Adulto , Bencilaminas , Radioisótopos de Carbono , Femenino , Calor , Humanos , Hipotálamo/diagnóstico por imagen , Masculino , Dolor/diagnóstico por imagen , Umbral del Dolor , Tomografía de Emisión de Positrones , Radiofármacos
20.
Cells ; 10(8)2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34440760

RESUMEN

Charles Bonnet syndrome (CBS) is a rare clinical condition characterized by complex visual hallucinations in people with loss of vision. So far, the neurobiological mechanisms underlying the hallucinations remain elusive. This case-report study aims at investigating electrical activity changes in a CBS patient during visual hallucinations, as compared to a resting-state period (without hallucinations). Prior to the EEG, the patient underwent neuropsychological, ophthalmologic, and neurological examinations. Spectral and connectivity, graph analyses and signal diversity were applied to high-density EEG data. Visual hallucinations (as compared to resting-state) were characterized by a significant reduction of power in the frontal areas, paralleled by an increase in the midline posterior regions in delta and theta bands and by an increase of alpha power in the occipital and midline posterior regions. We next observed a reduction of theta connectivity in the frontal and right posterior areas, which at a network level was complemented by a disruption of small-worldness (lower local and global efficiency) and by an increase of network modularity. Finally, we found a higher signal complexity especially when considering the frontal areas in the alpha band. The emergence of hallucinations may stem from these changes in the visual cortex and in core cortical regions encompassing both the default mode and the fronto-parietal attentional networks.


Asunto(s)
Mapeo Encefálico , Ondas Encefálicas , Encéfalo/fisiopatología , Síndrome de Charles Bonnet/diagnóstico , Electroencefalografía , Visión Ocular , Percepción Visual , Anciano de 80 o más Años , Síndrome de Charles Bonnet/fisiopatología , Síndrome de Charles Bonnet/psicología , Humanos , Masculino , Valor Predictivo de las Pruebas , Vías Visuales/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA