Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(6): 1335-1347, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25201528

RESUMEN

The apical dendrites of many neurons contain proximal and distal compartments that receive synaptic inputs from different brain regions. These compartments also contain distinct complements of ion channels that enable the differential processing of their respective synaptic inputs, making them functionally distinct. At present, the molecular mechanisms that specify dendritic compartments are not well understood. Here, we report that the extracellular matrix protein Reelin, acting through its downstream, intracellular Dab1 and Src family tyrosine kinase signaling cascade, is essential for establishing and maintaining the molecular identity of the distal dendritic compartment of cortical pyramidal neurons. We find that Reelin signaling is required for the striking enrichment of HCN1 and GIRK1 channels in the distal tuft dendrites of both hippocampal CA1 and neocortical layer 5 pyramidal neurons, where the channels actively filter inputs targeted to these dendritic domains.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Dendritas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Proteínas del Tejido Nervioso/genética , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteína Reelina , Serina Endopeptidasas/genética , Transducción de Señal , Familia-src Quinasas/metabolismo
3.
J Bone Miner Res ; 35(4): 789-800, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31880824

RESUMEN

The Rac1-specific guanosine triphosphatase (GTPase)-activating protein Slit-Robo GAP2 (Srgap2) is dramatically upregulated during RANKL-induced osteoclastogenesis. Srgap2 interacts with the cell membrane to locally inhibit activity of Rac1. In this study, we determined the role of Srgap2 in the myeloid lineage on bone homeostasis and the osteoclastic response to TNFα treatment. The bone phenotype of mice specifically lacking Srgap2 in the myeloid lineage (Srgap2 f/f :LysM-Cre; Srgap2 conditional knockout [cKO]) was investigated using histomorphometric analysis, in vitro cultures and Western blot analysis. Similar methods were used to determine the impact of TNFα challenge on osteoclast formation in Srgap2 cKO mice. Bone parameters in male Srgap2 cKO mice were unaffected. However, female cKO mice displayed higher trabecular bone volume due to increased osteoblast surface and bone formation rate, whereas osteoclastic parameters were unaltered. In vitro, cells from Srgap2 cKO had strongly enhanced Rac1 activation, but RANKL-induced osteoclast formation was unaffected. In contrast, conditioned medium from Srgap2 cKO osteoclasts promoted osteoblast differentiation and had increased levels of the bone anabolic clastokine SLIT3, providing a possible mechanism for increased bone formation in vivo. Rac1 is rapidly activated by the inflammatory cytokine TNFα. Supracalvarial injection of TNFα caused an augmented osteoclastic response in Srgap2 cKO mice. In vitro, cells from Srgap2 cKO mice displayed increased osteoclast formation in response to TNFα. We conclude that Srgap2 plays a prominent role in limiting osteoclastogenesis during inflammation through Rac1, and restricts expression of the paracrine clastokine SLIT3, a positive regulator of bone formation. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea , Proteínas Activadoras de GTPasa , Osteogénesis , Animales , Huesos , Diferenciación Celular , Femenino , Proteínas Activadoras de GTPasa/fisiología , Masculino , Proteínas de la Membrana , Ratones , Neuropéptidos , Osteoclastos , Ligando RANK , Proteína de Unión al GTP rac1
4.
Sci Rep ; 9(1): 18692, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822692

RESUMEN

Human-specific gene duplications (HSGDs) have recently emerged as key modifiers of brain development and evolution. However, the molecular mechanisms underlying the function of HSGDs remain often poorly understood. In humans, a truncated duplication of SRGAP2A led to the emergence of two human-specific paralogs: SRGAP2B and SRGAP2C. The ancestral copy SRGAP2A limits synaptic density and promotes maturation of both excitatory (E) and inhibitory (I) synapses received by cortical pyramidal neurons (PNs). SRGAP2C binds to and inhibits all known functions of SRGAP2A leading to an increase in E and I synapse density and protracted synapse maturation, traits characterizing human cortical neurons. Here, we demonstrate how the evolutionary changes that led to the emergence of SRGAP2 HSGDs generated proteins that, in neurons, are intrinsically unstable and, upon hetero-dimerization with SRGAP2A, reduce SRGAP2A levels in a proteasome-dependent manner. Moreover, we show that, despite only a few non-synonymous mutations specifically targeting arginine residues, SRGAP2C is unique compared to SRGAP2B in its ability to induce long-lasting changes in synaptic density throughout adulthood. These mutations led to the ability of SRGAP2C to inhibit SRGAP2A function and thereby contribute to the emergence of human-specific features of synaptic development during evolution.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Sinapsis/genética , Animales , Línea Celular Tumoral , Evolución Molecular , Proteínas Activadoras de GTPasa/metabolismo , Duplicación de Gen/genética , Humanos , Ratones , Neuronas/metabolismo , Organogénesis , Cultivo Primario de Células , Células Piramidales/metabolismo , Células Piramidales/fisiología , Sinapsis/metabolismo
5.
Neuron ; 91(2): 356-69, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27373832

RESUMEN

The proper function of neural circuits requires spatially and temporally balanced development of excitatory and inhibitory synapses. However, the molecular mechanisms coordinating excitatory and inhibitory synaptogenesis remain unknown. Here we demonstrate that SRGAP2A and its human-specific paralog SRGAP2C co-regulate the development of excitatory and inhibitory synapses in cortical pyramidal neurons in vivo. SRGAP2A promotes synaptic maturation, and ultimately the synaptic accumulation of AMPA and GABAA receptors, by interacting with key components of both excitatory and inhibitory postsynaptic scaffolds, Homer and Gephyrin. Furthermore, SRGAP2A limits the density of both types of synapses via its Rac1-GAP activity. SRGAP2C inhibits all identified functions of SRGAP2A, protracting the maturation and increasing the density of excitatory and inhibitory synapses. Our results uncover a molecular mechanism coordinating critical features of synaptic development and suggest that human-specific duplication of SRGAP2 might have contributed to the emergence of unique traits of human neurons while preserving the excitation/inhibition balance.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Inhibición Neural/fisiología , Sinapsis/fisiología , Humanos , Neurogénesis/genética , Neurogénesis/fisiología , Técnicas de Placa-Clamp/métodos , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA