Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 547: 96-101, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610046

RESUMEN

Carbonic anhydrases (CA) are the most ubiquitous ancient zinc metalloenzymes known. Here we report the structural and functional analysis of a hypothetical protein GK2848 from Geobacillus kaustophilus. The analysis revealed that it belongs to the γ-class of CA (termed as Cag). Only a limited number of γ-class CA's have been characterized till date. Interestingly Cag contains magnesium at its active site instead of a traditional zinc ion. Based on the structural and sequence comparison with similar γ-CA's the putative active site residues of Cag were identified. This analysis revealed that an important catalytic residue and a proton shuttle residue (Glu62 and Glu84 respectively) of Cam (previously characterized γ-CA from Methanosarcina thermophila) are absent in Cag, however certain other active site residues are conserved both in Cag and Cam. This suggests that Cag uses a different set of residues for the reversible hydration of CO2 to HCO3- when compared with Cam. Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) and 25Mg and 67Zn NMR studies on Cag and its mutants revealed that either Mg or Zn can occupy the active site which suggests the cambialistic nature of the enzyme.


Asunto(s)
Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Geobacillus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Magnesio/química , Protones , Alineación de Secuencia , Relación Estructura-Actividad , Zinc/química
2.
J Bacteriol ; 200(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29844033

RESUMEN

NurA and HerA are thought to be essential proteins for DNA end resection in archaeal homologous recombination systems. Thermus thermophilus, an extremely thermophilic eubacterium, has proteins that exhibit significant sequence similarity to archaeal NurA and HerA. To unveil the cellular function of NurA and HerA in T. thermophilus, we performed phenotypic analysis of disruptant mutants of nurA and herA with or without DNA-damaging agents. The nurA and herA genes were not essential for survival, and their deletion had no effect on cell growth and genome integrity. Unexpectedly, these disruptants of T. thermophilus showed increased resistance to UV irradiation and mitomycin C treatment. Further, these disruptants and the wild type displayed no difference in sensitivity to oxidative stress and a DNA replication inhibitor. T. thermophilus NurA had nuclease activity, and HerA had ATPase. The overexpression of loss-of-function mutants of nurA and herA in the respective disruptants showed no complementation, suggesting their enzymatic activities were involved in the UV sensitivity. In addition, T. thermophilus NurA and HerA interacted with each other in vitro and in vivo, forming a complex with 2:6 stoichiometry. These results suggest that the NurA-HerA complex has an architecture similar to that of archaeal counterparts but that it impairs, rather than promotes, the repair of photoproducts and DNA cross-links in T. thermophilus cells. This cellular function is distinctly different from that of archaeal NurA and HerA.IMPORTANCE Many nucleases and helicases are engaged in homologous recombination-mediated DNA repair. Previous in vitro analyses in archaea indicated that NurA and HerA are the recombination-related nuclease and helicase. However, their cellular function had not been fully understood, especially in bacterial cells. In this study, we performed in vivo analyses to address the cellular function of nurA and herA in an extremely thermophilic bacterium, Thermus thermophilus As a result, T. thermophilus NurA and HerA exhibited an interfering effect on the repair of several instances of DNA damage in the cell, which is in contrast to the results in archaea. This finding will facilitate our understanding of the diverse cellular functions of the recombination-related nucleases and helicases.


Asunto(s)
Proteínas Bacterianas/genética , Reparación del ADN/efectos de la radiación , Silenciador del Gen/efectos de la radiación , Thermus thermophilus/genética , Thermus thermophilus/efectos de la radiación , Rayos Ultravioleta , Secuencia de Aminoácidos , Daño del ADN/efectos de la radiación , ADN Helicasas/genética , Recombinación Homóloga , Modelos Moleculares
3.
J Biol Chem ; 292(23): 9801-9814, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28432121

RESUMEN

Homologous recombination (HR) plays an essential role in the maintenance of genome integrity. RecA/Rad51 paralogs have been recognized as an important factor of HR. Among them, only one bacterial RecA/Rad51 paralog, RadA, is involved in HR as an accessory factor of RecA recombinase. RadA has a unique Lon protease-like domain (LonC) at its C terminus, in addition to a RecA-like ATPase domain. Unlike Lon protease, RadA's LonC domain does not show protease activity but is still essential for RadA-mediated DNA repair. Reconciling these two facts has been difficult because RadA's tertiary structure and molecular function are unknown. Here, we describe the hexameric ring structure of RadA's LonC domain, as determined by X-ray crystallography. The structure revealed the two positively charged regions unique to the LonC domain of RadA are located at the intersubunit cleft and the central hole of a hexameric ring. Surprisingly, a functional domain analysis demonstrated the LonC domain of RadA binds DNA, with site-directed mutagenesis showing that the two positively charged regions are critical for this DNA-binding activity. Interestingly, only the intersubunit cleft was required for the DNA-dependent stimulation of ATPase activity of RadA, and at least the central hole was essential for DNA repair function. Our data provide the structural and functional features of the LonC domain and their function in RadA-mediated DNA repair.


Asunto(s)
Proteínas Bacterianas/química , Reparación del ADN , ADN Bacteriano/química , Rec A Recombinasas/química , Thermus thermophilus/enzimología , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano/genética , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Estructura Cuaternaria de Proteína , Rec A Recombinasas/genética , Thermus thermophilus/genética
4.
Nat Methods ; 12(2): 131-3, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25506719

RESUMEN

We describe a data collection method that uses a single crystal to solve X-ray structures by native SAD (single-wavelength anomalous diffraction). We solved the structures of 11 real-life examples, including a human membrane protein, a protein-DNA complex and a 266-kDa multiprotein-ligand complex, using this method. The data collection strategy is suitable for routine structure determination and can be implemented at most macromolecular crystallography synchrotron beamlines.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de la Membrana/química , Complejos Multiproteicos/química , Difracción de Rayos X/métodos , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Programas Informáticos , Sincrotrones
5.
Biochem Biophys Res Commun ; 482(2): 264-269, 2017 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-27845039

RESUMEN

The crystal structure of a hypothetical protein MJ0366, derived from Methanocaldococcus jannaschii was solved at 1.9 Å resolution using synchrotron radiation. MJ0366 was crystallized as a monomer and has knot structural arrangement. Intriguingly, the solved structure consists of novel 'KNOT' fold conformation. The 31 trefoil knot was observed in the structure. The N-terminal and C-terminal ends did not participate in knot formation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Methanocaldococcus/metabolismo , Modelos Químicos , Modelos Moleculares , Simulación por Computador , Cristalografía , Conformación Proteica , Pliegue de Proteína
6.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1178-1187, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28668638

RESUMEN

DNA mismatch repair (MMR) system corrects mismatched bases that are generated mainly by DNA replication errors. The repair system excises the error-containing single-stranded region and enables the re-synthesis of the strand. In the early reactions of MMR, MutL endonuclease incises the newly-synthesized/error-containing strand of the duplex to initiate the downstream excision reaction. MutL endonuclease consists of the N-terminal ATPase and C-terminal endonuclease domains. In this study, we report the crystal structure of the ATPase domain of MutL endonuclease from Aquifex aeolicus. The overall structure of the domain was similar to those of human MutL homologs and Escherichia coli MutL, although E. coli MutL has no endonuclease activity. The ATPase domain was comprised of two subdomains: the N-terminal ATP-binding subdomain and the C-terminal α-ß sandwich subdomain. Site-directed mutagenesis experiment identified DNA-interacting eight basic amino acid residues, which were distributed across both the two subdomains and formed a DNA-binding cleft. Docking simulation between the structures of the ATPase and endonuclease domains generated a reliable model structure for the full-length A. aeolicus MutL, which satisfies our previous result of small-angle X-ray scattering analysis. On the basis of the model structure and further experimental results, we concluded that the two separate DNA-binding sites in the full-length A. aeolicus MutL simultaneously bind a dsDNA molecule.


Asunto(s)
Proteínas Bacterianas/química , ADN/metabolismo , Proteínas MutL/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Reparación de la Incompatibilidad de ADN , Modelos Moleculares , Simulación del Acoplamiento Molecular , Proteínas MutL/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/metabolismo
7.
Biochim Biophys Acta Proteins Proteom ; 1865(2): 232-242, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27888076

RESUMEN

Lysine succinylation, one of post-translational acylations conserved from eukaryotes to bacteria, plays regulatory roles in various cellular processes. However, much remains unknown about the general and specific characteristics of lysine succinylation among bacteria, and about its functions different from those of other acylations. In this study, we characterized lysine succinylation, a newly discovered widespread type of lysine acylation in five bacterial species with different characteristics such as optimal growth temperature and cell wall structure. This study is the first to demonstrate that succinylation is general phenomenon occurring not only in mesophiles but also in thermophiles. Mapping of succinylation sites on protein structures revealed that succinylation occurs at many lysine residues important for protein function. Comparison of the succinylation sites in the five bacterial species provides insights regarding common protein regulation mechanisms utilizing lysine succinylation. Many succinylation sites were conserved among five bacteria, especially between Geobacillus kaustophilus and Bacillus subtilis, some of which are functionally important sites. Furthermore, systematic comparison of the succinyl-proteome results and our previous propionyl-proteome results showed that the abundance of these two types of acylations is considerably different among the five bacteria investigated. Many succinylation and propionylation events were detected in G. kaustophilus, whereas Escherichia coli and B. subtilis exhibited high succinylation and low propionylation; low succinylation and high propionylation were identified in Thermus thermophilus, and low succinylation and propionylation were observed in Rhodothermus marinus. Comparison of the characteristics of lysine succinylation and lysine propionylation suggested these two types of acylation play different roles in cellular processes.


Asunto(s)
Acilación/fisiología , Lisina/metabolismo , Proteoma/metabolismo , Ácido Succínico/metabolismo , Thermus thermophilus/metabolismo , Acetilación , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Geobacillus/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Rhodothermus/metabolismo
8.
Extremophiles ; 21(2): 283-296, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27928680

RESUMEN

Recent studies have revealed the physiological significance of post-translational lysine acylations such as acetylation in the regulation of various cellular processes. Here, we characterized lysine propionylation, a recently discovered post-translational acylation, in five representative bacteria: Geobacillus kaustophilus, Thermus thermophilus, Escherichia coli, Bacillus subtilis, and Rhodothermus marinus. Using antibody-based propionyl peptide enrichment followed by identification with nano-liquid chromatography tandem mass spectrometry, we showed that proteins were subject to lysine propionylation in all five bacterial species analyzed. Notably, many propionylations were identified in the Bacillus-related, thermophilic eubacterium G. kaustophilus, but fewer in the mesophilic eubacterium B. subtilis, suggesting that propionylation event abundance is independent of phylogenetic relationship. We further found propionylation sites in the thermophilic eubacterium T. thermophilus, but the thermophilic eubacterium R. marinus showed the fewest number of sites, indicating that growth temperature is not a determinant of propionylation state. In silico analyses demonstrated that lysine propionylation is related to metabolic pathways, particularly those controlled by acyl-CoA synthetases, similar to lysine acetylation. We also detected dozens of propionylation sites at positions important for protein functions across bacteria, demonstrating the regulatory mechanisms affected by lysine propionylations. Our proteome-wide analyses across bacteria thus provide insights into the general functions of lysine propionylation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Geobacillus/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/metabolismo , Rhodothermus/metabolismo , Thermus thermophilus/metabolismo , Acetilación , Lisina/metabolismo , Propionatos/metabolismo , Proteómica
9.
Extremophiles ; 20(3): 275-82, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26936147

RESUMEN

TTHA0829 from Thermus thermophilus HB8 has a molecular mass of 22,754 Da and is composed of 210 amino acid residues. The expression of TTHA0829 is remarkably elevated in the latter half of logarithmic growth phase. TTHA0829 can form either a tetrameric or dimeric structure, and main-chain folding provides an N-terminal cystathionine-ß-synthase (CBS) domain and a C-terminal aspartate-kinase chorismate-mutase tyrA (ACT) domain. Both CBS and ACT are regulatory domains to which a small ligand molecule can bind. The CBS domain is found in proteins from organisms belonging to all kingdoms and is observed frequently as two or four tandem copies. This domain is considered as a small intracellular module with a regulatory function and is typically found adjacent to the active (or functional) site of several enzymes and integral membrane proteins. The ACT domain comprises four ß-strands and two α-helices in a ßαßßαß motif typical of intracellular small molecule binding domains that help control metabolism, solute transport and signal transduction. We discuss the possible role of TTHA0829 based on its structure and expression pattern. The results imply that TTHA0829 acts as a cell-stress sensor or a metabolite acceptor.


Asunto(s)
Aspartato Quinasa/química , Proteínas Bacterianas/química , Corismato Mutasa/química , Cistationina betasintasa/química , Thermus thermophilus/genética , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corismato Mutasa/genética , Corismato Mutasa/metabolismo , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Dominios Proteicos , Thermus thermophilus/enzimología
10.
Biosci Biotechnol Biochem ; 80(11): 2138-2143, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27484886

RESUMEN

Adenosine kinase is a potential target for development of new types of drugs. The COG1839 family has been defined as "adenosine-specific kinase" family based on structural analysis and the adenosine-binding ability of a family member, PAE2307. However, there has been no experimental evidence with regard to the enzymatic function of this protein family. Here we measured the enzymatic activity of TTHA1091, a COG1839 family protein from Thermus thermophilus HB8. The phosphorylation of adenosine by TTHA1091 was undetectable when ATP or ADP were used as phosphate donor. However, the degradation of ADP to AMP was detected, indicating that this protein possessed adenosine diphosphatase (ADPase) activity. The (ADPase) activity was inhibited by divalent cations and was specific to ADP and CDP. Thus, this study provides the first experimental evidence for the enzymatic function of the "adenosine-specific kinase" family and suggests a need to reexamine its functional annotation.

11.
Mol Cell Proteomics ; 13(9): 2382-98, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24938286

RESUMEN

Recent studies of protein post-translational modifications revealed that various types of lysine acylation occur in eukaryotic and bacterial proteins. Lysine propionylation, a newly discovered type of acylation, occurs in several proteins, including some histones. In this study, we identified 361 propionylation sites in 183 mid-exponential phase and late stationary phase proteins from Thermus thermophilus HB8, an extremely thermophilic eubacterium. Functional classification of the propionylproteins revealed that the number of propionylation sites in metabolic enzymes increased in late stationary phase, irrespective of protein abundance. The propionylation sites on proteins expressed in mid-exponential and late stationary phases partially overlapped. Furthermore, amino acid frequencies in the vicinity of propionylation sites differed, not only between the two growth phases but also relative to acetylation sites. In addition, 33.8% of mid-exponential phase-specific and 80.0% of late stationary phase-specific propionylations (n ≥ 2) implied that specific mechanisms regulate propionylation in the cell. Moreover, the limited degree of overlap between lysine propionylation (36.8%) and acetylation (49.2%) sites in 67 proteins that were both acetylated and propionylated strongly suggested that the two acylation reactions are regulated separately by specific enzymes and may serve different functions. Finally, we also found that eight propionylation sites overlapped with acetylation sites critical for protein functions such as Schiff-base formation and ligand binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Thermus thermophilus/metabolismo , Acilación , Cromatografía Liquida , Espectrometría de Masas en Tándem
12.
Biochem Biophys Res Commun ; 465(2): 174-9, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26210451

RESUMEN

The enzymatic biosynthesis of L-arginine involves complex, sequential action of many enzymes and ornithine transcarbamylase (OTCase) is one of the essential enzymes in the pathway. In mammals OTCase is part of the urea cycle. Arginine is used in a variety of pharmaceutical and industrial applications and therefore engineering arginine biosynthesis pathway for overproduction of arginine has gained importance. On the other hand, it was found that detrimental mutations in the human OTCase gene resulted clinical hyperammonemia, with subsequent neurological damage. Therefore a better understanding of the structure-function relationship of this enzyme from various sources could be useful for modifying its enzymatic action. Here we report the structure of ornithine transcarbamylase of Thermus thermophilus HB8 (aTtOTCase) at 2.0 Å resolution. On comparison with its homologs, aTtOTCase showed maximum variation at the substrate binding loops namely 80s and SMG/240s loops. The active site geometry of aTtOTCase is unique among its homologs where the side chain of certain residues (Leu57, Arg58 and Arg288) is oriented differently. To study the structural insights of substrate binding in aTtOTCase, docking of carbamoyl phosphate (CP) and ornithine (Orn) was carried out sequentially. Both substrates were unable to bind in a proper orientation in the active site pocket and this could be due to the differently oriented side chains. This suggests that the active site geometry should also undergo fine tuning besides the large structural changes as the enzyme switches from completely open to a substrate bound closed state.


Asunto(s)
Apoproteínas/química , Proteínas Bacterianas/química , Carbamoil Fosfato/química , Ornitina Carbamoiltransferasa/química , Ornitina/química , Thermus thermophilus/química , Apoproteínas/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ornitina Carbamoiltransferasa/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología Estructural de Proteína , Especificidad por Sustrato , Thermus thermophilus/enzimología
13.
Nat Chem Biol ; 9(4): 277-83, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23434852

RESUMEN

LysW has been identified as a carrier protein in the lysine biosynthetic pathway that is active through the conversion of α-aminoadipate (AAA) to lysine. In this study, we found that the hyperthermophilic archaeon, Sulfolobus acidocaldarius, not only biosynthesizes lysine through LysW-mediated protection of AAA but also uses LysW to protect the amino group of glutamate in arginine biosynthesis. In this archaeon, after LysW modification, AAA and glutamate are converted to lysine and ornithine, respectively, by a single set of enzymes with dual functions. The crystal structure of ArgX, the enzyme responsible for modification and protection of the amino moiety of glutamate with LysW, was determined in complex with LysW. Structural comparison and enzymatic characterization using Sulfolobus LysX, Sulfolobus ArgX and Thermus LysX identify the amino acid motif responsible for substrate discrimination between AAA and glutamate. Phylogenetic analysis reveals that gene duplication events at different stages of evolution led to ArgX and LysX.


Asunto(s)
Proteínas Arqueales/metabolismo , Arginina/biosíntesis , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Lisina/biosíntesis , Sulfolobus acidocaldarius/metabolismo , Ácido 2-Aminoadípico/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Evolución Molecular , Duplicación de Gen , Ácido Glutámico/metabolismo , Modelos Moleculares , Ornitina/metabolismo , Filogenia , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Sulfolobus acidocaldarius/genética , Thermus/genética , Thermus/metabolismo
14.
Extremophiles ; 19(3): 643-56, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25809295

RESUMEN

DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Datos de Secuencia Molecular , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
15.
Extremophiles ; 19(4): 775-85, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25997395

RESUMEN

Hydrogen peroxide (H2O2) produces hydroxyl radicals that directly attack a variety of biomolecules and cause severe cellular dysfunction. An extremely thermophilic bacterium, Thermus thermophilus HB8, possesses at least three enzymes that can scavenge H2O2: manganese-containing catalase (TTHA0122, MnCAT), a possible peroxiredoxin homologue (TTHA1300), and a possible heme peroxidase (HPX) homologue (TTHA1714). To investigate the roles of these proteins, we attempted to disrupt each of these genes in T. thermophilus HB8. Although we were able to completely disrupt ttha1300, we were unable to completely delete ttha0122 and ttha1714 because of polyploidy. Quantitative real-time PCR showed that, compared to the wild type, 31 % of ttha0122 and 11 % of ttha1714 remained in the ∆ttha0122 and ∆ttha1714 disruption mutants, respectively. Mutants with reduced levels of ttha0122 or ttha1714 exhibited a significant increase in spontaneous mutation frequency. ∆ttha1714 grew slower than the wild type under normal conditions. ∆ttha0122 grew very poorly after exposure to H2O2. Moreover, ∆ttha0122 did not show H2O2-scavenging activity, whereas ∆ttha1300 and ∆ttha1714 scavenged H2O2, a property similar to that exhibited by the wild type. MnCAT purified from T. thermophilus HB8 cells scavenged H2O2 in vitro. The recombinant form of the possible HPX homologue, reconstituted with hemin, showed peroxidase activity with H2O2 as an oxidant substrate. Based on these results, we propose that not only MnCAT but also the possible HPX homologue is involved in protecting the cell from oxidative stress in T. thermophilus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Thermus thermophilus/enzimología , Proteínas Bacterianas/genética , Catalasa/genética , Peroxidasa/genética , Thermus thermophilus/genética
16.
J Struct Funct Genomics ; 15(3): 137-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24407378

RESUMEN

Phosphorylation and acetylation are the most prevalent post-translational modifications (PTMs) detected in not only eukaryotes but also bacteria. We performed phosphoproteome and acetylome analyses of proteins from an extremely thermophilic eubacterium Thermus thermophilus HB8, and identified numerous phosphorylation and acetylation sites. To facilitate the elucidation of the structural aspects of these PTM events, we mapped the PTM sites on the known tertiary structures for the respective proteins and their homologs. Wu et al. (Mol Cell Proteomics 12:2701-2713, 2013) recently reported phosphoproteome analysis of proteins from T. thermophilus HB27. Therefore, we assessed the structural characteristics of these phosphorylation and acetylation sites on the tertiary structures of the identified proteins or their homologs. Our study revealed that many of the identified phosphosites are in close proximity to bound ligands, i.e., the numbers of 'nearby' and 'peripheral' phosphorylation sites represent 56 % (48/86 sites) of total identified phosphorylation sites. In addition, approximately 60 % of all phosphosites exhibited <10 % accessible surface area of their side chains, suggesting some structural rearrangement is required for phosphoryl transfer by kinases. Our findings also indicate that phosphorylation of a residue occurs more frequently at a flexible region of the protein, whereas lysine acetylation occurs more frequently in an ordered structure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Procesamiento Proteico-Postraduccional , Thermus thermophilus/metabolismo , Acetilación , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Aspartato Aminotransferasas/metabolismo , Fosfopéptidos/análisis , Fosfopéptidos/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Proteoma/análisis , Proteómica , Relación Estructura-Actividad
17.
BMC Genomics ; 15: 386, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24884843

RESUMEN

BACKGROUND: RNA metabolism, including RNA synthesis and RNA degradation, is one of the most conserved biological systems and has been intensively studied; however, the degradation network of ribonucleases (RNases) and RNA substrates is not fully understood. RESULTS: The genome of the extreme thermophile, Thermus thermophilus HB8 includes 15 genes that encode RNases or putative RNases. Using DNA microarray analyses, we examined the effects of disruption of each RNase on mRNA abundance. Disruption of the genes encoding RNase J, RecJ-like protein and RNase P could not be isolated, indicating that these RNases are essential for cell viability. Disruption of the TTHA0252 gene, which was not previously considered to be involved in mRNA degradation, affected mRNA abundance, as did disruption of the putative RNases, YbeY and PhoH-like proteins, suggesting that they have RNase activity. The effects on mRNA abundance of disruption of several RNase genes were dependent on the phase of cell growth. Disruption of the RNase Y and RNase HII genes affected mRNA levels only during the log phase, whereas disruption of the PhoH-like gene affected mRNA levels only during the stationary phase. Moreover, disruption of the RNase R and PNPase genes had a greater impact on mRNA abundance during the stationary phase than the log phase, whereas the opposite was true for the TTHA0252 gene disruptant. Similar changes in mRNA levels were observed after disruption of YbeY or PhoH-like genes. The changes in mRNA levels in the bacterial Argonaute disruptant were similar to those in the RNase HI and RNase HII gene disruptants, suggesting that bacterial Argonaute is a functional homolog of RNase H. CONCLUSION: This study suggests that T. thermophilus HB8 has 13 functional RNases and that each RNase has a different function in the cell. The putative RNases, TTHA0252, YbeY and PhoH-like proteins, are suggested to have RNase activity and to be involved in mRNA degradation. In addition, PhoH-like and YbeY proteins may act cooperatively in the stationary phase. This study also suggests that endo-RNases function mainly during the log phase, whereas exo-RNases function mainly during the stationary phase. RNase HI and RNase HII may have similar substrate selectivity.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Thermus thermophilus/genética , Proteínas Bacterianas/genética , Análisis por Conglomerados , Genoma Bacteriano , Modelos Biológicos , Estabilidad del ARN , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleasas/genética , Especificidad por Sustrato
18.
Extremophiles ; 18(6): 973-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24996798

RESUMEN

Dihydrodipicolinate synthase (DHDPS, E.C.4.2.1.52) catalyzes the first committed step in the lysine biosynthetic pathway: the condensation of (S)-aspartate semialdehyde and pyruvate to form (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, we report the crystal structure of DHDPS from a hyperthermophilic bacterium Aquifex aeolicus (AqDHDPS). L-Lysine is used as an important animal feed additive where the production is at the level of 1.5 million tons per year. The biotechnological manufacture of lysine has been going for more than 50 years which includes over synthesis and reverse engineering of DHDPS. AqDHDPS revealed a unique disulfide linkage which is not conserved in the homologues of AqDHDPS. In silico mutation of C139A and intermolecular ion-pair residues and the subsequent molecular dynamics simulation of the mutants showed that these residues are critical for the stability of AqDHDPS tetramer. MD simulations of AqDHDPS at three different temperatures (303, 363 and 393 K) revealed that the molecule is stable at 363 K. Thus, this structural and in silico study of AqDHDPS likely provides additional details towards the rational and structure-based design of hyper-L-lysine producing bacterial strains.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Hidroliasas/química , Simulación de Dinámica Molecular , Sitio Alostérico , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hidroliasas/genética , Hidroliasas/metabolismo , Datos de Secuencia Molecular , Mutación , Estabilidad Proteica
19.
Extremophiles ; 18(6): 995-1008, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25069875

RESUMEN

ArgR is known to serve as a repressor/activator of the metabolism of arginine. To elucidate the role of ArgR in the metabolism of Thermus thermophilus cells, comparative genome-wide comprehensive analysis was conducted for wild-type T. thermophilus and its mutant lacking the argR gene. Transcriptome analysis and chromatin affinity precipitation coupled with high-density tiling chip (ChAP-chip) analysis identified 34 genetic loci that are directly regulated by ArgR and indicated that ArgR decreases the expression of arginine biosynthesis and also regulates several other genes involved in amino acid metabolism, including lysine biosynthetic genes, as suggested by our previous study. Among genes whose expression was regulated by ArgR, the largest effect of argR knockout was observed in a putative operon, including genes TTHA0284, TTHA0283, and TTHA0282 involved in arginine biosynthesis. The promoter of this operon, argG, was repressed approximately 21-fold by ArgR. DNase I footprint analysis coupled with electrophoretic mobility shift assay suggested that high arginine-dependent repression was attributed to the fact that the promoter contains three operators for ArgR binding and ArgR is bound to the binding sites cooperatively, possibly forming a DNA loop, in the hexameric form stabilized by arginine binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Proteínas Represoras/metabolismo , Thermus thermophilus/genética , Transcripción Genética , Arginina/biosíntesis , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión , Lisina/biosíntesis , Datos de Secuencia Molecular , Operón , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Thermus thermophilus/metabolismo , Transcriptoma
20.
J Proteome Res ; 12(9): 3952-68, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23901841

RESUMEN

Lysine acetylation in proteins has recently been globally identified in bacteria and eukaryotes. Even though acetylproteins are known to be involved in various cellular processes, its physiological significance has not yet been resolved. Using a proteomics approach in combination with immunoprecipitation, we identified 197 lysine acetylation sites and 4 N-terminal acetylation sites from 128 proteins in Thermus thermophilus HB8, an extremely thermophilic eubacterium. Our analyses revealed that identified acetylproteins are well conserved across all three domains of life and are mainly involved in central metabolism and translation. To characterize the functional significance further, we successfully mapped 172 acetylation sites on their 59 authentic and 54 homologous protein structures. Although the percentage of acetylation on ordered structures was higher than that of the disordered structure, no tendency of acetylation in T. thermophilus was detected in secondary structures. However, the acetylated lysine was situated near the negatively charged glutamic acid residues. In tertiary structure analyses, 58 sites of 103 acetylations mapped on 59 authentic structures of T. thermophilus were located within a considerable distance that can disrupt electrostatic interactions and hydrogen bonding networks on protein surfaces, demonstrating the physiological significance of the acetylation that can directly alter the protein structure. In addition, we found 16 acetylation sites related to Schiff base formation, ligand binding, and protein-RNA and protein-protein interactions that involve the potential function of the proteins. The structural mapping of acetylation sites provides new molecular insight into the role of lysine acetylation in the proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Thermus thermophilus/metabolismo , Acetilación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Secuencia de Consenso , Enlace de Hidrógeno , Modelos Moleculares , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Mapeo Peptídico , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteoma/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA