Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36458527

RESUMEN

Ramified, polarized protoplasmic astrocytes interact with synapses via perisynaptic astrocyte processes (PAPs) to form tripartite synapses. These astrocyte-synapse interactions mutually regulate their structures and functions. However, molecular mechanisms for tripartite synapse formation remain elusive. We developed an in vitro co-culture system for mouse astrocytes and neurons that induced astrocyte ramifications and PAP formation. Co-cultured neurons were required for astrocyte ramifications in a neuronal activity-dependent manner, and synaptically-released glutamate and activation of astrocytic mGluR5 metabotropic glutamate receptor were likely involved in astrocyte ramifications. Astrocytic Necl2 trans-interacted with axonal Necl3, inducing astrocyte-synapse interactions and astrocyte functional polarization by recruiting EAAT1/2 glutamate transporters and Kir4.1 K+ channel to the PAPs, without affecting astrocyte ramifications. This Necl2/3 trans-interaction increased functional synapse number. Thus, astrocytic Necl2, synaptically-released glutamate and axonal Necl3 cooperatively formed tripartite glutamatergic synapses in vitro. Studies on hippocampal mossy fiber synapses in Necl3 knockout and Necl2/3 double knockout mice confirmed these previously unreported mechanisms for astrocyte-synapse interactions and astrocyte functional polarization in vivo.


Asunto(s)
Ácido Glutámico , Sinapsis , Ratones , Animales , Sinapsis/fisiología , Ratones Noqueados , Ácido Glutámico/farmacología , Astrocitos/fisiología , Fibras Musgosas del Hipocampo
2.
J Biol Chem ; 299(4): 103040, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803960

RESUMEN

A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.


Asunto(s)
Proteínas de Microfilamentos , Receptores AMPA , Sinapsis , Animales , Ratones , Homólogo 4 de la Proteína Discs Large/metabolismo , Flurotilo , Hipocampo/metabolismo , Proteínas de Microfilamentos/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo
3.
Biochem Biophys Res Commun ; 519(3): 626-632, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31540692

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder, characterized by impaired social interaction, repetitive behavior and restricted interests. Although the molecular etiology of ASD remains largely unknown, recent studies have suggested that de novo mutations are significantly involved in the risk of ASD. We and others recently identified spontaneous de novo mutations in PKD2, a protein kinase D family member, in sporadic ASD cases. However, the biological significance of the de novo PKD2 mutations and the role of PKD2 in brain development remain unclear. Here, we performed functional analysis of PKD2 in cortical neuron development using in utero electroporation. PKD2 is highly expressed in cortical neural stem cells in the developing cortex and regulates cortical neuron development, including the neuronal differentiation of neural stem cells and migration of newborn neurons. Importantly, we determined that the ASD-associated de novo mutations impair the kinase activity of PKD2, suggesting that the de novo PKD2 mutations can be a risk factor for the disease by loss of function of PKD2. Our current findings provide novel insight into the molecular and cellular pathogenesis of ASD.


Asunto(s)
Trastorno del Espectro Autista/enzimología , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Canales Catiónicos TRPP/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Desarrollo Embrionario , Células HEK293 , Humanos , Neuronas/citología
4.
Mol Cell Neurosci ; 49(2): 184-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22146684

RESUMEN

Axonal varicosities and dendritic spines at excitatory synapses are dynamic structures essential for synaptic plasticity, whereas the behavior of inhibitory synapses during development and plasticity remains largely unknown. To investigate the morphology and dynamics of inhibitory synapses, we used two distinct pre- and postsynaptic fluorescent probes: one is a yellow fluorescent protein, Venus, incorporated into vesicular GABA transporter (VGAT) gene as a specific marker of presynaptic inhibitory neurons and the other red fluorescent protein (mCherry)-tagged gephyrin, a postsynaptic scaffolding protein, as a postsynaptic marker. Using primary culture of mouse hippocampal neurons and confocal laser-scanning microscopy, we established a system by which close contacts of Venus-positive axonal varicosities with mCherry-labeled gephyrin clusters in the dendritic shafts of dissociated hippocampal pyramidal neurons could be clearly visualized. Time-lapse imaging revealed that: (1) the presynaptic varicosities actively moved with marked changes in their shapes, and the postsynaptic scaffolding protein gephyrin clusters underwent coordinated movements in a tight association with the presynaptic varicosities, (2) the extents of morphological changes and movements depended on the developmental stages, reaching a stable level as the inhibitory synaptic connections matured, and (3) the motility indexes of the varicosity and its counterpart gephyrin cluster were well correlated. Furthermore, action potential blockade with tetrodotoxin treatment reduced the varicosity size, gephyrin cluster mobility as well as the amplitude of GABAergic synaptic currents in pyramidal neurons. Such a neural activity-dependent dynamic change in GABAergic synaptic morphology is likely to play a critical role in the regulatory mechanism underlying the formation and plasticity of inhibitory synapses.


Asunto(s)
Hipocampo/citología , Sinapsis/ultraestructura , Animales , Axones/metabolismo , Axones/ultraestructura , Proteínas Portadoras/metabolismo , Células Cultivadas , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Ratas , Sinapsis/metabolismo , Sinapsis/fisiología , Imagen de Lapso de Tiempo/métodos , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
5.
Transl Psychiatry ; 11(1): 548, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697299

RESUMEN

An increasing body of evidence suggests that impaired synapse development and function are associated with schizophrenia; however, the underlying molecular pathophysiological mechanism of the disease remains largely unclear. We conducted a family-based study combined with molecular and cellular analysis using induced pluripotent stem cell (iPSC) technology. We generated iPSCs from patients with familial schizophrenia, differentiated these cells into neurons, and investigated the molecular and cellular phenotypes of the patient's neurons. We identified multiple altered synaptic functions, including increased glutamatergic synaptic transmission, higher synaptic density, and altered splicing of dopamine D2 receptor mRNA in iPSC-derived neurons from patients. We also identified patients' specific genetic mutations using whole-exome sequencing. Our findings support the notion that altered synaptic function may underlie the molecular and cellular pathophysiology of schizophrenia, and that multiple genetic factors cooperatively contribute to the development of schizophrenia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Diferenciación Celular , Humanos , Neuronas , Receptores de Dopamina D2/genética , Esquizofrenia/genética
6.
J Neurochem ; 105(4): 1384-93, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18331582

RESUMEN

The NMDA receptor regulates spine morphological plasticity by modulating Rho GTPases. However, the molecular mechanisms for NMDA receptor-mediated regulation of Rho GTPases remain elusive. In this study, we show that p250GAP, an NMDA receptor-associated RhoGAP, regulates spine morphogenesis by modulating RhoA activity. Knock-down of p250GAP increased spine width and elevated the endogenous RhoA activity in primary hippocampal neurons. The increased spine width by p250GAP knock-down was suppressed by the expression of a dominant-negative form of RhoA. Furthermore, p250GAP is involved in NMDA receptor-mediated RhoA activation. In response to NMDA receptor activation, exogenously expressed green fluorescent protein (GFP)-tagged p250GAP was redistributed. Thus, these data suggest that p250GAP plays an important role in NMDA receptor-mediated regulation of RhoA activity leading to spine morphological plasticity.


Asunto(s)
Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Proteínas Activadoras de GTPasa/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/enzimología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/genética
7.
J Neurosci ; 26(29): 7693-706, 2006 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16855097

RESUMEN

Organization and dynamic remodeling of postsynaptic density (PSD) are thought to be critical in postsynaptic signal transduction, but the underlying molecular mechanisms are not well understood. We show here that four major scaffolding molecules, PSD-95, GKAP, Shank, and PSD-Zip45, show distinct instability in total molecular content per synapse. Fluorescence recovery after photobleaching also confirmed their distinct turnover rates. Among the PSD molecules examined, PSD-95 was most stable, but its elimination did not influence the dynamics of its direct binding partner GKAP. Multiple interactions of scaffolding molecules with the actin cytoskeleton have suggested their importance in both maintenance and remodeling of the PSD. Indeed, acute pharmacological disruption of F-actin rapidly eliminated the dynamic fraction of GKAP, Shank, and PSD-Zip45, without changing synaptic localization of PSD-95. GKAP content in synapses increased after pharmacological enhancement of neuronal activity, whereas Shank and PSD-Zip45 content showed reduction. Inhibition of F-actin dynamics prevented activity-dependent redistribution of all three scaffolds. We also assessed involvement of glutamate receptors in the regulation of PSD dynamics. Genetic manipulations eliminating either NMDA receptors or metabotropic glutamate receptors did not primarily influence mobility of their binding scaffolds. These results collectively indicate a critical role of filamentous actin in determining the extent of dynamic reorganization in PSD molecular composition.


Asunto(s)
Actinas/fisiología , Membranas Sinápticas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Recuperación de Fluorescencia tras Fotoblanqueo , Guanilato-Quinasas , Proteínas de Andamiaje Homer , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Confocal , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Estructura Terciaria de Proteína/fisiología , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/deficiencia , Receptores de N-Metil-D-Aspartato/deficiencia , Proteínas Asociadas a SAP90-PSD95 , Membranas Sinápticas/metabolismo , Distribución Tisular , Transfección
8.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197549

RESUMEN

Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system.


Asunto(s)
Potenciales Postsinápticos Inhibidores/fisiología , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Receptores de Glicina/metabolismo , Médula Espinal/citología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Glicinérgicos/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Fotoblanqueo , Transporte de Proteínas/efectos de los fármacos , Receptores de Glicina/genética , Estricnina/farmacología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
9.
Sci Rep ; 7(1): 13409, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29042611

RESUMEN

The roles of calcium-calmodulin-dependent protein kinase II-alpha (CaMKIIα) in the expression of long-term synaptic plasticity in the adult brain have been extensively studied. However, how increased CaMKIIα activity controls the maturation of neuronal circuits remains incompletely understood. Herein, we show that pyramidal neurons without CaMKIIα activity upregulate the rate of spine addition, resulting in elevated spine density. Genetic elimination of CaMKIIα activity specifically eliminated the observed maturation-dependent suppression of spine formation. Enhanced spine formation was associated with the stabilization of actin in the spine and could be reversed by increasing the activity of the small GTPase Rap1. CaMKIIα activity was critical in the phosphorylation of synaptic Ras GTPase-activating protein (synGAP), the dispersion of synGAP from postsynaptic sites, and the activation of postsynaptic Rap1. CaMKIIα is already known to be essential in learning and memory, but our findings suggest that CaMKIIα plays an important activity-dependent role in restricting spine density during postnatal development.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Diferenciación Celular/genética , Espinas Dendríticas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al GTP rap1/genética , Animales , Biomarcadores , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Técnica del Anticuerpo Fluorescente , Hipocampo , Ratones , Modelos Biológicos , Plasticidad Neuronal , Fosforilación , Unión Proteica , Células Piramidales/citología , Células Piramidales/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
10.
Nat Commun ; 5: 4742, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25144834

RESUMEN

Developmental deficits in neuronal connectivity are considered to be present in patients with autism spectrum disorders (ASDs). Here we examine this possibility by using in vivo spine imaging in the early postnatal cortex of ASD mouse models. Spines are classified by the presence of either the excitatory postsynaptic marker PSD-95 or the inhibitory postsynaptic marker gephyrin. ASD mouse models show consistent upregulation in the dynamics of PSD-95-positive spines, which may subsequently contribute to stable synaptic connectivity. In contrast, spines receiving inputs from the thalamus, detected by the presence of gephyrin clusters, are larger, highly stable and unaffected in ASD mouse models. Importantly, two distinct mouse models, human 15q11-13 duplication and neuroligin-3 R451C point mutation, show highly similar phenotypes in spine dynamics. This selective impairment in dynamics of PSD-95-positive spines receiving intracortical projections may be a core component of early pathological changes and be a potential target of early intervention.


Asunto(s)
Trastorno Autístico/fisiopatología , Espinas Dendríticas/patología , Animales , Trastorno Autístico/etiología , Biomarcadores/análisis , Biomarcadores/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Espinas Dendríticas/fisiología , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Femenino , Proteínas Fluorescentes Verdes , Guanilato-Quinasas/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Densidad Postsináptica , Embarazo , Sinapsis/fisiología
11.
Nat Commun ; 4: 1440, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23385585

RESUMEN

Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.


Asunto(s)
Dendritas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/enzimología , Animales , Animales Recién Nacidos , Espinas Dendríticas/enzimología , Quinasas Similares a Doblecortina , Potenciales Postsinápticos Excitadores , Técnicas de Silenciamiento del Gen , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Ratones , Ratones Noqueados , Microscopía Fluorescente , Fenotipo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Receptores AMPA/metabolismo , Transducción de Señal , Fracciones Subcelulares/enzimología
12.
Cell ; 110(4): 429-41, 2002 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-12202033

RESUMEN

The adult brain is extremely vulnerable to various insults. The recent discovery of neural progenitors in adult mammals, however, raises the possibility of repairing damaged tissue by recruiting their latent regenerative potential. Here we show that activation of endogenous progenitors leads to massive regeneration of hippocampal pyramidal neurons after ischemic brain injury. Endogenous progenitors proliferate in response to ischemia and subsequently migrate into the hippocampus to regenerate new neurons. Intraventricular infusion of growth factors markedly augments these responses, thereby increasing the number of newborn neurons. Our studies suggest that regenerated neurons are integrated into the existing brain circuitry and contribute to ameliorating neurological deficits. These results expand the possibility of novel neuronal cell regeneration therapies for stroke and other neurological diseases.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Sustancias de Crecimiento/farmacología , Hipocampo/crecimiento & desarrollo , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo , Células Madre/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , División Celular/efectos de los fármacos , División Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Sustancias de Crecimiento/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Masculino , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Regeneración Nerviosa/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/ultraestructura , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Células Piramidales/efectos de los fármacos , Células Piramidales/ultraestructura , Ratas , Ratas Wistar , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Células Madre/efectos de los fármacos , Células Madre/ultraestructura , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA