Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Cell Biol ; 2024: 6798897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716144

RESUMEN

Elk-1 is a member of the ETS domain transcription factor superfamily that is phosphorylated upon mitogen-activated protein kinase (MAPK) pathway activation, which in turn regulated its interaction with partner protein serum response factor (SRF), leading to formation of a ternary complex with DNA. It has previously been reported that Elk-1 interacts with a mitotic kinase Aurora-A, although the mechanisms or the relevance of this interaction was unclear. Elk-1 was also reported to be phosphorylated by CDK5 on Thr417 residue. In this study, we show for the first time that this transcription factor interacts not only with Aurora-A but also with other mitotic kinases Aurora-B, Plk1, and Cdk1, and we define the interaction domain on Elk-1 to the first N-terminal 205 amino acids. We also describe putative phosphorylation sites of these mitotic kinases on Elk-1 and show that Elk-1 peptides containing these residues get phosphorylated by the mitotic kinases in in vitro kinase assays. We also perform bioinformatic analysis of mitotic phosphoproteomes and determine potential interaction partners for Elk-1 in Plk or Aurora phosphoproteomes. We propose that understanding the dynamic phosphorylation of Elk-1 by mitotic kinases is important and that it can present a novel target for anticancer strategies.

2.
J Mol Evol ; 76(5): 343-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23689513

RESUMEN

The phenotypes of biological systems are to some extent robust to genotypic changes. Such robustness exists on multiple levels of biological organization. We analyzed this robustness for two categories of amino acids in proteins. Specifically, we studied the codons of amino acids that bind or do not bind small molecular ligands. We asked to what extent codon changes caused by mutation or mistranslation may affect physicochemical amino acid properties or protein folding. We found that the codons of ligand-binding amino acids are on average more robust than those of non-binding amino acids. Because mistranslation is usually more frequent than mutation, we speculate that selection for error mitigation at the translational level stands behind this phenomenon. Our observations suggest that natural selection can affect the robustness of very small units of biological organization.


Asunto(s)
Aminoácidos/química , Codón/química , Mutación , Proteínas/genética , Selección Genética , Aminoácidos/genética , Sitios de Unión , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ligandos , Fenotipo , Biosíntesis de Proteínas , Pliegue de Proteína
3.
Cell Biochem Funct ; 31(7): 591-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23322625

RESUMEN

Elk-1 is a member of the E-twenty-six (ETS) domain superfamily of transcription factors and has been traditionally associated with mitogen-induced immediate early gene transcription upon phosphorylation by mitogen activated protein kinases (ERK/MAPK). Elk-1 is not only upregulated but also phosphorylated in brain tumour cells. However, in this study, we show for the first time that S383-phosphorylated Elk-1 (P-S383-Elk-1) is associated with mitotic spindle poles from metaphase through telophase and relocates to the spindle midbody during cytokinesis, while Thr417Ala mutation is associated with DNA throughout mitosis. Serine 383 phosphorylation appears to be important for polar localization of Elk-1, since exogenous protein including serine-to-alanine mutation was seen to be distributed throughout the spindle fibres. We further show that Elk-1 interacts with the cell cycle kinase Aurora-A, and when Aurora inhibitors are used, P-S383-Elk-1 fails to localize to the poles and remains associated with DNA. Apart from one transcriptional repressor molecule, Kaiso, this is the first time a transactivator was shown to possess such mitotic localization and interaction. The functional significance and detailed mechanism of this cell cycle-related localization of Elk-1 are yet to be determined.


Asunto(s)
Aurora Quinasa A/metabolismo , Serina/genética , Polos del Huso/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Línea Celular Tumoral , Citocinesis , Humanos , Mitosis , Mutación , Fosforilación , Proteína Elk-1 con Dominio ets/genética
4.
Biosystems ; 227-228: 104891, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030605

RESUMEN

The ETS domain transcription factor family is one of the major transcription factor superfamilies that play regulatory roles in development, cell growth, and cancer progression. Although different functions of ETS member proteins in the nervous system have been demonstrated in various studies, their role in neuronal cell differentiation and the evolutionary conservation of its target genes have not yet been extensively studied. In this study, we focused on the regulatory role of ETS transcription factors in neuronal differentiation and their functional evolution by comparative transcriptomics. In order to investigate the regulatory role of ETS transcription factors in neuronal differentiation across species, transcriptional profiles of ETS members and their target genes were investigated by comparing differentially expressed genes and gene regulatory networks, which were analyzed using human, gorilla, mouse, fruit fly and worm transcriptomics datasets. Bioinformatics approaches to examine the evolutionary conservation of ETS transcription factors during neuronal differentiation have shown that ETS member proteins regulate genes associated with neuronal differentiation, nervous system development, axon, and synaptic regulation in different organisms. This study is a comparative transcriptomic study of ETS transcription factors in terms of neuronal differentiation using a gene regulatory network inference algorithm. Overall, a comparison of gene regulation networks revealed that ETS members are indeed evolutionarily conserved in the regulation of neuronal differentiation. Nonetheless, ETS, PEA3, and ELF subfamilies were found to be relatively more active transcription factors in the transcriptional regulation of neuronal differentiation.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias , Ratones , Humanos , Animales , Redes Reguladoras de Genes/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Regulación de la Expresión Génica/genética
5.
Mol Omics ; 19(3): 218-228, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36723117

RESUMEN

The most common treatment strategies for Parkinson's disease (PD) aim to slow down the neurodegeneration process or control the symptoms. In this study, using an in vitro PD model we carried out a transcriptome-based drug target prediction strategy. We identified novel drug target candidates by mapping genes upregulated in 6-OHDA-treated cells on a human protein-protein interaction network. Among the predicted targets, we show that AKR1C3 and CEBPB are promising in validating our bioinformatics approach since their known ligands, rutin and quercetin, respectively, act as neuroprotective drugs that effectively decrease cell death, and restore the expression profiles of key genes upregulated in 6-OHDA-treated cells. We also show that these two genes upregulated in our in vitro PD model are downregulated to basal levels upon drug administration. As a further validation of our methodology, we further confirm that the potential target genes identified with our bioinformatics approach are also upregulated in post-mortem transcriptome samples of PD patients from the literature. Therefore, we propose that this methodology predicts novel drug targets AKR1C3 and CEBPB, which are relevant to future clinical applications as potential drug repurposing targets for PD. Our systems-based computational approach to predict candidate drug targets can be employed in identifying novel drug targets in other diseases without a priori assumption.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Transcriptoma/genética , Oxidopamina/farmacología , Oxidopamina/uso terapéutico , Preparaciones Farmacéuticas , Mapas de Interacción de Proteínas/genética
6.
Trends Mol Med ; 29(3): 173-187, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36585352

RESUMEN

Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Biodiversidad , Agua Dulce
7.
Biochim Biophys Acta ; 1812(6): 652-62, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21362474

RESUMEN

Elk-1 belongs to the ternary complex factors (TCFs) subfamily of the ETS domain proteins, and plays a critical role in the expression of immediate-early genes (IEGs) upon mitogen stimulation and activation of the mitogen-activated protein kinase (MAPK) cascade. The association of TCFs with serum response elements (SREs) on IEG promoters has been widely studied and a role for Elk-1 in promoting cell cycle entry has been determined. However, the presence of the ETS domain transcription factor Elk-1 in axons and dendrites of post-mitotic adult brain neurons has implications for an alternative function for Elk-1 in neurons other than controlling proliferation. In this study, possible alternative roles for Elk-1 in neurons were investigated, and it was demonstrated that blocking TCF-mediated transactivation in neuronal cells leads to apoptosis through a caspase-dependent mechanism. Indeed RNAi-mediated depletion of endogenous Elk-1 results in increased caspase activity. Conversely, overexpression of either Elk-1 or Elk-VP16 fusion proteins was shown to rescue PC12 cells from chemically-induced apoptosis, and that higher levels of endogenous Elk-1 correlated with longer survival of DRGs in culture. It was shown that Elk-1 regulated the Mcl-1 gene expression required for survival, and that RNAi-mediated degradation of endogenous Elk-1 resulted in elimination of the mcl-1 message. We have further identified the survival-of-motor neuron-1 (SMN1) gene as a novel target of Elk-1, and show that the ets motifs in the SMN1 promoter are involved in this regulation.


Asunto(s)
Neuronas/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína Elk-1 con Dominio ets/fisiología , Animales , Apoptosis , Caspasas/fisiología , Supervivencia Celular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Neuronas/citología , Células PC12 , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ratas
8.
Cell Mol Neurobiol ; 32(2): 185-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21935709

RESUMEN

Elk-1 belongs to the Ternary Complex Factor (TCF) subfamily of the ETS (from E26 viral oncogene) domain superfamily of transcription factors, and has been known as a regulator of mitogen-induced immediate early gene transcription upon Mitogen Activated Protein Kinase (MAPK) activation. Elk-1 has been previously shown to interact with neuronal microtubules, and here we show that P-S383-Elk-1, in addition to co-localizing with motor proteins kinesin, Eg5 and Mitotik Kinesin-Like Protein (MKLP) at the mitotic spindles, it physically interacts with dynein in a serum induction-dependent but Ser383 phosphorylation-independent manner.


Asunto(s)
Dineínas/metabolismo , Fosfoserina/metabolismo , Suero/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , Animales , Línea Celular Tumoral , ADN/metabolismo , Humanos , Fosforilación , Unión Proteica , Transporte de Proteínas , Ratas , Tubulina (Proteína)/metabolismo
9.
Bioorg Med Chem ; 20(13): 4149-54, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22633120

RESUMEN

Structurally modified phthalimide derivatives were prepared through condensation of phthalic and tetrafluorophthalic anhydride with selected sulfonamides with variable yields. All compounds were screened for their antimycobacterium activity against Mycobacterium tuberculosis H37Ra (ATCC 25177) using a micro broth dilution technique. The fluorinated derivatives (compounds 2c, 2d, 2f and 2h) had antimycobacterium activity comparable with classical sulfonamide drugs. The minimum inhibitory concentration (MIC) of compounds 2c, 2d, 2f and 2h was greater than that of isoniazid (MIC<0.02 µg/mL) and in vitro activity was greater than that of pyrazinamide, another first line antimycobacterium drug (MIC 50-100 µg/mL). The new compounds could be considered new lead compounds in the treatment of multi-drug resistant tuberculosis.


Asunto(s)
Antituberculosos/síntesis química , Ftalimidas/química , Animales , Antituberculosos/farmacología , Antituberculosos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Isoniazida/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Ftalimidas/farmacología , Ftalimidas/toxicidad , Pirazinamida/farmacología
10.
OMICS ; 26(5): 305-317, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483054

RESUMEN

Multiple sclerosis (MS) is a demyelinating disorder that affects multiple regions of the central nervous system such as the brain, spinal cord, and optic nerves. Susceptibility to MS, as well as disease progression rates, displays marked patient-to-patient variability. To date, biomarkers that forecast differences in clinical phenotypes and outcomes have been limited. In this context, cell-type-specific interactome analyses offer important prospects and hope for novel diagnostics and therapeutics. We report here an original study using bioinformatic analysis of MS data sets that revealed interaction profiles as well as specific hub proteins in white matter (WM) and gray matter (GM) that appear critical for disease mechanisms. First, cell-type-specific interactome analyses suggested that while interactions within the WM were focused on oligodendrocytes, interactions within the GM were mostly neuron centric. Second, hub proteins such as APP, EGLN3, PTEN, and LRRK2 were identified to be differentially regulated in MS data sets. Lastly, a comparison of the brain and peripheral blood samples identified biomarker candidates such as NRGN, CRTC1, CDC42, and IFITM3 to be differentially expressed in different types of MS. These findings offer a unique cell-type-specific cell-to-cell interaction network in MS and identify potential biomarkers by comparative analysis of the brain and the blood transcriptomics. From a study design and methodology perspective, we suggest that the cell-type-specific interactome analysis is an important systems science frontier that might offer new insights on other neurodegenerative and brain disorders as well.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Biomarcadores/metabolismo , Encéfalo/metabolismo , Sustancia Gris/metabolismo , Humanos , Imagen por Resonancia Magnética , Proteínas de la Membrana/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Proteínas de Unión al ARN/metabolismo , Sustancia Blanca/metabolismo
11.
J Pers Med ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671331

RESUMEN

The ETS domain family of transcription factors is involved in a number of biological processes, and is commonly misregulated in various forms of cancer. Using microarray datasets from patients with different grades of glioma, we have analyzed the expression profiles of various ETS genes, and have identified ETV1, ELK3, ETV4, ELF4, and ETV6 as novel biomarkers for the identification of different glioma grades. We have further analyzed the gene regulatory networks of ETS transcription factors and compared them to previous microarray studies, where Elk-1-VP16 or PEA3-VP16 were overexpressed in neuroblastoma cell lines, and we identify unique and common regulatory networks for these ETS proteins.

12.
J Pers Med ; 11(2)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672811

RESUMEN

Elk-1, a member of the ternary complex factors (TCFs) within the ETS (E26 transformation-specific) domain superfamily, is a transcription factor implicated in neuroprotection, neurodegeneration, and brain tumor proliferation. Except for known targets, c-fos and egr-1, few targets of Elk-1 have been identified. Interestingly, SMN, SOD1, and PSEN1 promoters were shown to be regulated by Elk-1. On the other hand, Elk-1 was shown to regulate the CD133 gene, which is highly expressed in brain-tumor-initiating cells (BTICs) and used as a marker for separating this cancer stem cell population. In this study, we have carried out microarray analysis in SH-SY5Y cells overexpressing Elk-1-VP16, which has revealed a large number of genes significantly regulated by Elk-1 that function in nervous system development, embryonic development, pluripotency, apoptosis, survival, and proliferation. Among these, we have shown that genes related to pluripotency, such as Sox2, Nanog, and Oct4, were indeed regulated by Elk-1, and in the context of brain tumors, we further showed that Elk-1 overexpression in CD133+ BTIC population results in the upregulation of these genes. When Elk-1 expression is silenced, the expression of these stemness genes is decreased. We propose that Elk-1 is a transcription factor upstream of these genes, regulating the self-renewal of CD133+ BTICs.

13.
J Mol Evol ; 70(1): 13-28, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20012032

RESUMEN

Since the identification of the Standard Coding Table as a "universal" method to translate genetic information into amino acids, exceptions to this rule have been reported, and to date there are nearly 20 alternative genetic coding tables deployed by either nuclear genomes or organelles of organisms. Why are these codes still in use and why are new codon reassignments occurring? This present study aims to provide a new method to address these questions and to analyze whether these alternative codes present any advantages or disadvantages to the organisms or organelles in terms of robustness to error. We show that two of the alternative coding tables, The Ciliate, Dasycladacean and Hexamita Nuclear Code (CDH) and The Flatworm Mitochondrial Code (FMC), exhibit an advantage, while others such as The Yeast Mitochondrial Code (YMC) are at a significant disadvantage. We propose that the Standard Code is likely to have emerged as a "local minimum" and that the "coding landscape" is still being searched for a "global" minimum.


Asunto(s)
Código Genético , Secuencia de Aminoácidos , Animales , Codón/genética , Código Genético/genética , Humanos , Datos de Secuencia Molecular
14.
Mol Cell Neurosci ; 40(1): 111-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19013529

RESUMEN

ETS domain transcription factor Elk-1 has been primarily studied in the regulation of genes in response to mitogenic stimuli, however the presence of Elk-1 in axonal projections of largely post-mitotic adult hippocampal sections has been reported. This finding has initially led us to a basic question: how is Elk-1 anchored to neuronal projections? To that end, we have investigated the intracellular localization of Elk-1 and its biochemical interactions with neuronal microtubules in model systems. Our results showed co-localization of Elk-1 with microtubules in hippocampal cultures and SH-SY5Y neuroblastoma cell lines, and have further demonstrated that Elk-1 protein can biochemically interact with microtubules in vitro. Analysis of the protein sequence has indicated many putative microtubule binding domains, with the strongest binding prediction in amino acids 314-325, and our results show that Elk-1 can bind to microtubules through most of these regions, but no interaction was observed through the DNA binding domain, where no putative binding motifs were predicted. We further show that upon serum induction, most of the phospho-Elk-1 translocates to the nucleus, which is independent of translation. We propose that Elk-1 is anchored to neuronal microtubules in resting or unstimulated cells, and upon stimulation is phosphorylated, which relocalizes phospho-Elk-1 to the nucleus in neurons.


Asunto(s)
Núcleo Celular/metabolismo , Microtúbulos/metabolismo , Neuronas , Proteína Elk-1 con Dominio ets/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Hipocampo/citología , Humanos , Datos de Secuencia Molecular , Neuroblastoma , Neuronas/citología , Neuronas/metabolismo , Fosforilación , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína Elk-1 con Dominio ets/genética
15.
Sci Rep ; 10(1): 18162, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097800

RESUMEN

PEA3 transcription factor subfamily is present in a variety of tissues with branching morphogenesis, and play a particularly significant role in neural circuit formation and specificity. Many target genes in axon guidance and cell-cell adhesion pathways have been identified for Pea3 transcription factor (but not for Erm or Er81); however it was not so far clear whether all Pea3 subfamily members regulate same target genes, or whether there are unique targets for each subfamily member that help explain the exclusivity and specificity of these proteins in neuronal circuit formation. In this study, using transcriptomics and qPCR analyses in SH-SY5Y neuroblastoma cells, hypothalamic and hippocampal cell line, we have identified cell type-specific and subfamily member-specific targets for PEA3 transcription factor subfamily. While Pea3 upregulates transcription of Sema3D and represses Sema5B, for example, Erm and Er81 upregulate Sema5A and Er81 regulates Unc5C and Sema4G while repressing EFNB3 in SH-SY5Y neuroblastoma cells. We furthermore present a molecular model of how unique sites within the ETS domain of each family member can help recognize specific target motifs. Such cell-context and member-specific combinatorial expression profiles help identify cell-cell and cell-extracellular matrix communication networks and how they establish specific connections.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proyección Neuronal/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/metabolismo , Axones , Línea Celular Tumoral , Movimiento Celular/genética , Efrina-B3/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Hipocampo/citología , Humanos , Hipotálamo/citología , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Dominios Proteicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Semaforinas/genética , Activación Transcripcional
16.
Neurosci Lett ; 738: 135348, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891673

RESUMEN

Pea3 proteins belong to a subfamily of the E-twentysix (ETS) domain superfamily of transcription factors, which play various roles during development. Polyoma Enhancer-Activator 3 (Pea3) proteins Pea3, ERM and Er81 are particularly involved in tissues with branching morphogenesis, including kidney, lung, mammary gland and nervous system development. A recent transcriptomic study on novel targets of Pea3 transcription factor revealed various axon guidance and nervous system development related targets, supporting a role of Pea3 proteins in motor neuron connectivity, as well as novel targets in signaling pathways involved in synaptic plasticity. This study focuses on the expression of Pea3 family members in hippocampal neurons, and regulation of putative Pea3 targets in Pea3-overexpressing cell lines and following induction of long-term potentiation or seizure in vivo. We show that Pea3 proteins are expressed in hippocampus in both neuronal and non-neuronal cells, and that Pea3 represses Elk-1 but activates Prkca and Nrcam expression in hippocampal cell lines. We also show that mRNA and protein levels of Pea3 family members are differentially regulated in the dentate gyrus and CA1 region upon MECS stimulation, but not upon LTP induction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Neuronas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Transactivadores/genética , Factores de Transcripción/genética , Transcriptoma
17.
Int J Mol Sci ; 9(5): 679-697, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-19325778

RESUMEN

The rules that specify how the information contained in DNA is translated into amino acid "language" during protein synthesis are called "the genetic code", commonly called the "Standard" or "Universal" Genetic Code Table. As a matter of fact, this coding table is not at all "universal": in addition to different genetic code tables used by different organisms, even within the same organism the nuclear and mitochondrial genes may be subject to two different coding tables. Results In an attempt to understand the advantages and disadvantages these coding tables may bring to an organism, we have decided to analyze various coding tables on genes subject to mutations, and have estimated how these genes "survive" over generations. We have used this as indicative of the "evolutionary" success of that particular coding table. We find that the "standard" genetic code is not actually the most robust of all coding tables, and interestingly, Flatworm Mitochondrial Code (FMC) appears to be the highest ranking coding table given our assumptions. Conclusions It is commonly hypothesized that the more robust a genetic code, the better suited it is for maintenance of the genome. Our study shows that, given the assumptions in our model, Standard Genetic Code is quite poor when compared to other alternate code tables in terms of robustness. This brings about the question of why Standard Code has been so widely accepted by a wider variety of organisms instead of FMC, which needs to be addressed for a thorough understanding of genetic code evolution.

18.
Mol Cell Biol ; 24(23): 10340-51, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15542842

RESUMEN

Members of the ternary complex factor (TCF) subfamily of the ETS-domain transcription factors are activated through phosphorylation by mitogen-activated protein kinases (MAPKs) in response to a variety of mitogenic and stress stimuli. The TCFs bind and activate serum response elements (SREs) in the promoters of target genes in a ternary complex with a second transcription factor, serum response factor (SRF). The association of TCFs with SREs within immediate-early gene promoters is suggestive of a role for the ternary TCF-SRF complex in promoting cell cycle entry and proliferation in response to mitogenic signaling. Here we have investigated the downstream gene regulatory and phenotypic effects of inhibiting the activity of genes regulated by TCFs by expressing a dominantly acting repressive form of the TCF, Elk-1. Inhibition of ternary complex activity leads to the downregulation of several immediate-early genes. Furthermore, blocking TCF-mediated gene expression leads to growth arrest and triggers apoptosis. By using mutant Elk-1 alleles, we demonstrated that these effects are via an SRF-dependent mechanism. The antiapoptotic gene Mcl-1 is identified as a key target for the TCF-SRF complex in this system. Thus, our data confirm a role for TCF-SRF-regulated gene activity in regulating proliferation and provide further evidence to indicate a role in protecting cells from apoptotic cell death.


Asunto(s)
Apoptosis , Factor de Respuesta Sérica/metabolismo , Alelos , Northern Blotting , Western Blotting , Bromodesoxiuridina/farmacología , Ciclo Celular , Línea Celular , Proliferación Celular , Separación Celular , Supervivencia Celular , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Citometría de Flujo , Genes Reporteros , Vectores Genéticos , Células HeLa , Humanos , Factor de Unión 1 al Potenciador Linfoide , Microscopía Fluorescente , Mitógenos , Modelos Biológicos , Modelos Moleculares , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección
19.
PLoS One ; 12(2): e0170585, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28158215

RESUMEN

Pea3 transcription factor belongs to the PEA3 subfamily within the ETS domain transcription factor superfamily, and has been largely studied in relation to its role in breast cancer metastasis. Nonetheless, Pea3 plays a role not only in breast tumor, but also in other tissues with branching morphogenesis, including kidneys, blood vasculature, bronchi and the developing nervous system. Identification of Pea3 target promoters in these systems are important for a thorough understanding of how Pea3 functions. Present study particularly focuses on the identification of novel neuronal targets of Pea3 in a combinatorial approach, through curation, computational analysis and microarray studies in a neuronal model system, SH-SY5Y neuroblastoma cells. We not only show that quite a number of genes in cancer, immune system and cell cycle pathways, among many others, are either up- or down-regulated by Pea3, but also identify novel targets including ephrins and ephrin receptors, semaphorins, cell adhesion molecules, as well as metalloproteases such as kallikreins, to be among potential target promoters in neuronal systems. Our overall results indicate that rather than early stages of neurite extension and axonal guidance, Pea3 is more involved in target identification and synaptic maturation.


Asunto(s)
Neuronas/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Endocitosis/genética , Endocitosis/fisiología , Humanos , Neuronas/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
20.
Comput Biol Chem ; 30(3): 179-92, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16679066

RESUMEN

Glucose and galactose are two alternative carbon sources in yeast for energy production, producing CO2 and alcohol. The yeast needs to switch from glucose to galactose metabolism as required, by transcriptional regulation of the respective metabolic enzymes. This regulation is achieved mainly through the GAL genetic switch, in addition to glucose repression mechanism. This study integrates the two metabolic pathways with the genetic regulatory circuit using the GEPASI 3.30 simulation environment, and investigates the model behavior under various nutrient conditions. Our system is successful in achieving transcriptional upregulation of the galactose metabolizing enzymes as required. Under high glucose and high galactose concentrations, the in silico yeast chooses to metabolize glucose first, after which it resorts to using the galactose available. We also show what the preferred storage macromolecules are in different metabolic pathways.


Asunto(s)
Galactosa/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Redes y Vías Metabólicas/genética , Modelos Biológicos , Metabolismo de los Hidratos de Carbono/genética , Simulación por Computador , Regulación Enzimológica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA