Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Cell Sci ; 133(9)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393673

RESUMEN

Peroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs. A number of recent findings have advanced our understanding of the biology, physiology and consequences of functional defects in peroxisomes. In this Review, we discuss a cooperative cell defense mechanisms against oxidative stress that involves the localization of BAK (also known as BAK1) to peroxisomes, which alters peroxisomal membrane permeability, resulting in the export of catalase, a peroxisomal enzyme. Another important recent finding is the discovery of a nucleoside diphosphate kinase-like protein that has been shown to be essential for how the energy GTP is generated and provided for the fission of peroxisomes. With regard to PBDs, we newly identified a mild mutation, Pex26-F51L that causes only hearing loss. We will also discuss findings from a new PBD model mouse defective in Pex14, which manifested dysregulation of the BDNF-TrkB pathway, an essential signaling pathway in cerebellar morphogenesis. Here, we thus aim to provide a current view of peroxisome biogenesis and the molecular pathogenesis of PBDs.


Asunto(s)
Trastorno Peroxisomal , Peroxisomas , Animales , Membranas Intracelulares/metabolismo , Ratones , Peroxinas , Trastorno Peroxisomal/genética , Peroxisomas/metabolismo , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 114(50): 13284-13289, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29180407

RESUMEN

Mitochondria, which evolved from a free-living bacterial ancestor, contain their own genomes and genetic systems and are produced from preexisting mitochondria by binary division. The mitochondrion-dividing (MD) ring is the main skeletal structure of the mitochondrial division machinery. However, the assembly mechanism and molecular identity of the MD ring are unknown. Multi-omics analysis of isolated mitochondrial division machinery from the unicellular alga Cyanidioschyzon merolae revealed an uncharacterized glycosyltransferase, MITOCHONDRION-DIVIDING RING1 (MDR1), which is specifically expressed during mitochondrial division and forms a single ring at the mitochondrial division site. Nanoscale imaging using immunoelectron microscopy and componential analysis demonstrated that MDR1 is involved in MD ring formation and that the MD ring filaments are composed of glycosylated MDR1 and polymeric glucose nanofilaments. Down-regulation of MDR1 strongly interrupted mitochondrial division and obstructed MD ring assembly. Taken together, our results suggest that MDR1 mediates the synthesis of polyglucan nanofilaments that assemble to form the MD ring. Given that a homolog of MDR1 performs similar functions in chloroplast division, the establishment of MDR1 family proteins appears to have been a singular, crucial event for the emergence of endosymbiotic organelles.


Asunto(s)
Glicosiltransferasas/metabolismo , Biogénesis de Organelos , Proteínas de Plantas/metabolismo , Rhodophyta/metabolismo , Glucanos/metabolismo , Glicosiltransferasas/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Proteínas de Plantas/genética , Rhodophyta/ultraestructura
3.
J Cell Sci ; 130(5): 853-867, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115534

RESUMEN

Organelle division is executed through contraction of a ring-shaped supramolecular dividing machinery. A core component of the machinery is the dynamin-based ring conserved during the division of mitochondrion, plastid and peroxisome. Here, using isolated peroxisome-dividing (POD) machinery from a unicellular red algae, Cyanidioschyzon merolae, we identified a dynamin-based ring organizing center (DOC) that acts as an initiation point for formation of the dynamin-based ring. C. merolae contains a single peroxisome, the division of which can be highly synchronized by light-dark stimulation; thus, intact POD machinery can be isolated in bulk. Dynamin-based ring homeostasis is maintained by the turnover of the GTP-bound form of the dynamin-related protein Dnm1 between the cytosol and division machinery via the DOC. A single DOC is formed on the POD machinery with a diameter of 500-700 nm, and the dynamin-based ring is unidirectionally elongated from the DOC in a manner that is dependent on GTP concentration. During the later step of membrane fission, the second DOC is formed and constructs the double dynamin-based ring to make the machinery thicker. These findings provide new insights to define fundamental mechanisms underlying the dynamin-based membrane fission in eukaryotic cells.


Asunto(s)
Proteínas Algáceas/metabolismo , Dinaminas/metabolismo , Peroxisomas/metabolismo , Rhodophyta/metabolismo , Bioensayo , Ciclo Celular , Citosol/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Biológicos
4.
Artículo en Inglés | MEDLINE | ID: mdl-30745504

RESUMEN

GTP is an essential source of energy that supports a large array of cellular mechanochemical structures ranging from protein synthesis machinery to cytoskeletal apparatus for maintaining the cell cycle. However, GTP regulation during the cell cycle has been difficult to investigate because of heterogenous levels of GTP in asynchronous cell cycles and genetic redundancy of the GTP-generating enzymes. Here, in the unicellular red algae Cyanidioschyzon merolae, we demonstrated that the ATP-GTP-converting enzyme DYNAMO2 is an essential regulator of global GTP levels during the cell cycle. The cell cycle of C. merolae can be highly synchronized by light/dark stimulations to examine GTP levels at desired time points. Importantly, the genome of C. merolae encodes only two isoforms of the ATP-GTP-converting enzyme, namely DYNAMO1 and DYNAMO2. DYNAMO1 regulates organelle divisions, whereas DYNAMO2 is entirely localized in the cytoplasm. DYNAMO2 protein levels increase during the S-M phases, and changes in GTP levels are correlated with these DYNAMO2 protein levels. These results indicate that DYNAMO2 is a potential regulator of global GTP levels during the cell cycle.


Asunto(s)
Ciclo Celular , Guanosina Trifosfato/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Rhodophyta/citología , Secuencia de Aminoácidos , División Celular , Citosol/metabolismo , Nucleósido-Difosfato Quinasa/química , Rhodophyta/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(23): 9583-8, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23696667

RESUMEN

Peroxisomes (microbodies) are ubiquitous single-membrane-bounded organelles and fulfill essential roles in the cellular metabolism. They are found in virtually all eukaryotic cells and basically multiply by division. However, the mechanochemical machinery involved in peroxisome division remains elusive. Here, we first identified the peroxisome-dividing (POD) machinery. We isolated the POD machinery from Cyanidioschyzon merolae, a unicellular red alga containing a single peroxisome. Peroxisomal division in C. merolae can be highly synchronized by light/dark cycles and the microtubule-disrupting agent oryzalin. By proteomic analysis based on the complete genome sequence of C. merolae, we identified a dynamin-related protein 3 (DRP3) ortholog, CmDnm1 (Dnm1), that predominantly accumulated with catalase in the dividing-peroxisome fraction. Immunofluorescence microscopy demonstrated that Dnm1 formed a ring at the division site of the peroxisome. The outlines of the isolated dynamin rings were dimly observed by phase-contrast microscopy and clearly stained for Dnm1. Electron microscopy revealed that the POD machinery was formed at the cytoplasmic side of the equator. Immunoelectron microscopy showed that the POD machinery consisted of an outer dynamin-based ring and an inner filamentous ring. Down-regulation of Dnm1 impaired peroxisomal division. Surprisingly, the same Dnm1 serially controlled peroxisomal division after mitochondrial division. Because genetic deficiencies of Dnm1 orthologs in multiperoxisomal organisms inhibited both mitochondrial and peroxisomal proliferation, it is thought that peroxisomal division by contraction of a dynamin-based machinery is universal among eukaryotes. These findings are useful for understanding the fundamental systems in eukaryotic cells.


Asunto(s)
Dinamina I/metabolismo , Peroxisomas/fisiología , Rhodophyta/fisiología , Catalasa/metabolismo , Dinitrobencenos , Regulación hacia Abajo , Dinamina I/genética , Immunoblotting , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Peroxisomas/ultraestructura , Proteómica , Rhodophyta/genética , Rhodophyta/ultraestructura , Sulfanilamidas
6.
J Cell Sci ; 126(Pt 11): 2392-400, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23549784

RESUMEN

The cell cycle usually refers to the mitotic cycle, but the cell-division cycle in the plant kingdom consists of not only nuclear but also mitochondrial and chloroplast division cycle. However, an integrated control system that initiates division of the three organelles has not been found. We report that a novel C-terminal kinesin-like protein, three-organelle division-inducing protein (TOP), controls nuclear, mitochondrial and chloroplast divisions in the red alga Cyanidioschyzon merolae. A proteomics study revealed that TOP is a member of a complex of mitochondrial-dividing (MD) and plastid-dividing (PD) machineries (MD/PD machinery complex) just prior to constriction. After TOP localizes at the MD/PD machinery complex, mitochondrial and chloroplast divisions occur and the components of the MD/PD machinery complexes are phosphorylated. Furthermore, we found that TOP downregulation impaired both mitochondrial and chloroplast divisions. MD/PD machinery complexes were formed normally at each division site but they were neither phosphorylated nor constricted in these cells. Immunofluorescence signals of Aurora kinase (AUR) were localized around the MD machinery before constriction, whereas AUR was dispersed in the cytosol by TOP downregulation, suggesting that AUR is required for the constriction. Taken together our results suggest that TOP induces phosphorylation of MD/PD machinery components to accomplish mitochondrial and chloroplast divisions prior to nuclear division, by relocalization of AUR. In addition, given the presence of TOP homologs throughout the eukaryotes, and the involvement of TOP in mitochondrial and chloroplast division may illuminate the original function of C-terminal kinesin-like proteins.


Asunto(s)
División del Núcleo Celular/fisiología , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cinesinas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Rhodophyta/metabolismo , Aurora Quinasas , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Cinesinas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/fisiología , Rhodophyta/genética
7.
Nature ; 458(7236): 357-61, 2009 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-19295610

RESUMEN

For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.


Asunto(s)
Factores Quimiotácticos/metabolismo , Defensinas/metabolismo , Magnoliopsida/citología , Magnoliopsida/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Secuencia de Aminoácidos , Factores Quimiotácticos/química , Factores Quimiotácticos/farmacología , Defensinas/química , Defensinas/farmacología , Etiquetas de Secuencia Expresada , Magnoliopsida/efectos de los fármacos , Magnoliopsida/genética , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/genética , Tubo Polínico/efectos de los fármacos , Tubo Polínico/genética , ARN de Planta/antagonistas & inhibidores , ARN de Planta/genética , ARN de Planta/metabolismo , Transcripción Genética
8.
Genes Genet Syst ; 98(6): 353-360, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38267054

RESUMEN

We report the complete organellar genome sequences of an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, which has the smallest known nuclear genome in freshwater green algae. Medakamo hakoo has 90.8-kb chloroplast and 36.5-kb mitochondrial genomes containing 80 and 33 putative protein-coding genes, respectively. The mitochondrial genome is the smallest in the Trebouxiophyceae algae studied so far. The GC content of the nuclear genome is 73%, but those of chloroplast and mitochondrial genomes are 41% and 35%, respectively. Codon usages in the organellar genomes have a different tendency from that in the nuclear genome. The organellar genomes have unique characteristics, such as the biased encoding of mitochondrial genes on a single strand and the absence of operon structures in chloroplast ribosomal genes. Medakamo hakoo will be helpful for understanding the evolution of the organellar genome and the regulation of gene expression in chloroplasts and mitochondria.


Asunto(s)
Chlorophyta , Genoma Mitocondrial , Microalgas , ADN de Cloroplastos/genética , Mitocondrias/genética , Cloroplastos/genética , Chlorophyta/genética , Agua Dulce , Filogenia , ADN Mitocondrial/genética
9.
Plant Cell ; 22(3): 772-81, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20348431

RESUMEN

Vacuoles/lysosomes function in endocytosis and in storage and digestion of metabolites. These organelles are inherited by the daughter cells in eukaryotes. However, the mechanisms of this inheritance are poorly understood because the cells contain multiple vacuoles that behave randomly. The primitive red alga Cyanidioschyzon merolae has a minimum set of organelles. Here, we show that C. merolae contains about four vacuoles that are distributed equally between the daughter cells by binding to dividing mitochondria. Binding is mediated by VIG1, a 30-kD coiled-coil protein identified by microarray analyses and immunological assays. VIG1 appears on the surface of free vacuoles in the cytosol and then tethers the vacuoles to the mitochondria. The vacuoles are released from the mitochondrion in the daughter cells following VIG1 digestion. Suppression of VIG1 by antisense RNA disrupted the migration of vacuoles. Thus, VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance in C. merolae.


Asunto(s)
Proteínas Algáceas/metabolismo , Mitocondrias/metabolismo , Rhodophyta/genética , Vacuolas/metabolismo , Proteínas Algáceas/genética , Ciclo Celular , Perfilación de la Expresión Génica , Microscopía Electrónica de Transmisión , Rhodophyta/metabolismo , Análisis de Secuencia de Proteína , Vacuolas/ultraestructura
10.
Nat Cell Biol ; 8(1): 64-71, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16378100

RESUMEN

The double fertilization process in angiosperms is based on the delivery of a pair of sperm cells by the pollen tube (the male gametophyte), which elongates towards an embryo sac (the female gametophyte) enclosing an egg and a central cell. Several studies have described the mechanisms of gametophyte interaction, and also the fertilization process - from pollination to pollen tube acceptance. However, the mechanisms of gamete interaction are not fully understood. Cytological studies have shown that male gametes possess distinct cell-surface structures and genes specific to male gametes have been detected in cDNA libraries. Thus, studies of isolated gametes may offer clues to understanding the sperm-egg interaction. In this study, we identified a novel protein, designated GCS1 (GENERATIVE CELL SPECIFIC 1), using generative cells isolated from Lilium longiflorum pollen. GCS1 possesses a carboxy-terminal transmembrane domain, and homologues are present in various species, including non-angiosperms. Immunological assays indicate that GCS1 is accumulated during late gametogenesis and is localized on the plasma membrane of generative cells. In addition, Arabidopsis thaliana GCS1 mutant gametes fail to fuse, resulting in male sterility and suggesting that GCS1 is a critical fertilization factor in angiosperms.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Fertilización , Genes de Plantas , Magnoliopsida/fisiología , Polen/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Lilium , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Polen/citología , Homología de Secuencia de Aminoácido , Células Madre/metabolismo
11.
Commun Biol ; 6(1): 89, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690657

RESUMEN

Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.


Asunto(s)
Chlorophyta , Genoma , Filogenia , Chlorophyta/genética , Genómica , Agua Dulce
12.
Proc Natl Acad Sci U S A ; 106(3): 803-7, 2009 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19141634

RESUMEN

Eukaryotic cells arose from an ancient endosymbiotic association of prokaryotes, with plant cells harboring 3 genomes as the remnants of such evolution. In plant cells, plastid and mitochondrial DNA replication [organelle DNA replication (ODR)] occurs in advance of the subsequent cell cycles composed of nuclear DNA replication (NDR) and cell division. However, the mechanism by which replication of these genomes with different origins is coordinated is largely unknown. Here, we show that NDR is regulated by a tetrapyrrole signal in plant cells, which has been suggested as an organelle-to-nucleus retrograde signal. In synchronized cultures of the primitive red alga Cyanidioschyzon merolae, specific inhibition of A-type cyclin-dependent kinase (CDKA) prevented NDR but not ODR after onset of the cell cycle. In contrast, inhibition of ODR by nalidixic acid also resulted in inhibition of NDR, indicating a strict dependence of NDR on ODR. The requirement of ODR for NDR was bypassed by addition of the tetrapyrrole intermediates protoporphyrin IX (ProtoIX) or Mg-ProtoIX, both of which activated CDKA without inducing ODR. This scheme was also observed in cultured tobacco cells (BY-2), where inhibition of ODR by nalidixic acid prevented CDKA activation and NDR, and these inhibitions were circumvented by Mg-ProtoIX without inducing ODR. We thus show that tetrapyrrole-mediated organelle-nucleus replicational coupling is an evolutionary conserved process among plant cells.


Asunto(s)
Ciclo Celular , Núcleo Celular/metabolismo , Replicación del ADN , Orgánulos/metabolismo , Plantas/genética , Rhodophyta/genética , Tetrapirroles/fisiología , Quinasas Ciclina-Dependientes/fisiología
13.
Proc Natl Acad Sci U S A ; 106(30): 12548-53, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19592510

RESUMEN

Plant cells sense environmental nitrogen levels and alter their gene expression accordingly to survive; however, the underlying regulatory mechanisms still remains to be elucidated. Here, we identified and characterized a transcription factor that is responsible for expression of nitrogen assimilation genes in a unicellular red alga Cyanidioschyzon merolae. DNA microarray and Northern blot analyses revealed that transcript of the gene encoding CmMYB1, an R2R3-type MYB transcription factor, increased 1 h after nitrogen depletion. The CmMYB1 protein started to accumulate after 2 h and reached a peak after 4 h after nitrogen depletion, correlating with the expression of key nitrogen assimilation genes, such as CmNRT, CmNAR, CmNIR, CmAMT, and CmGS. Although the transcripts of these nitrogen assimilation genes were detected in nitrate-grown cells, they disappeared upon the addition of preferred nitrogen source such as ammonium or glutamine, suggesting the presence of a nitrogen catabolite repression (NCR) mechanism. The nitrogen depletion-induced gene expression disappeared in a CmMYB1-null mutant, and the mutant showed decreased cell viability after exposure to the nitrogen-depleted conditions compared with the parental strain. Chromatin immunoprecipitation analysis demonstrated that CmMYB1 specifically occupied these nitrogen-responsive promoter regions only under nitrogen-depleted conditions, and electrophoretic mobility shift assays using crude cell extract revealed specific binding of CmMYB1, or a complex containing CmMYB1, to these promoters. Thus, the presented results indicated that CmMYB1 is a central nitrogen regulator in C. merolae.


Asunto(s)
Proteínas Algáceas/genética , Nitrógeno/metabolismo , Rhodophyta/genética , Factores de Transcripción/genética , Proteínas Algáceas/metabolismo , Sitios de Unión , Northern Blotting , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Ácido Glutámico/farmacología , Glutamina/farmacología , Immunoblotting , Microscopía Fluorescente , Mutación , Nitratos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Unión Proteica , Compuestos de Amonio Cuaternario/farmacología , Elementos de Respuesta/genética , Rhodophyta/metabolismo , Factores de Transcripción/metabolismo
15.
Protoplasma ; 259(3): 731-742, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34417661

RESUMEN

Mitochondria are essential organelles involved in the production and supply of energy in eukaryotic cells. Recently, the use of serial section scanning electron microscopy (S3EM) has allowed accurate three-dimensional (3D) reconstructed images of even complex organelle structures. Using this method, ultrathin sections of etiolated cotyledons were observed 4 days after germination of Arabidopsis thaliana in the dark, and giant mitochondria were found. To exclude the possibility of chemical fixation artifacts, this study confirmed the presence of giant mitochondria in high-pressure frozen samples. The 3D reconstructed giant mitochondria had a complex structure that included not only the elongated region but also the flattened shape of a disk. It contained the characteristic sheet structure, and the sheet lacked cristae and matrix but consisted of outer and inner membranes. Whether this phenomenon could be observed in living cells was investigated using the transformant with mitochondrial matrix expressing green fluorescent protein. Small globular mitochondria observed in light-treated samples were also represented in etiolated cotyledons. Although no giant mitochondria were observed in light-treated samples, they were found in the dark 3 days after germination and rapidly increased in number on the fourth day. Therefore, giant mitochondria were observed only in dark samples. These findings were supported by electron microscopy results.


Asunto(s)
Arabidopsis , Cotiledón/metabolismo , Microscopía Electrónica de Rastreo , Mitocondrias , Orgánulos/metabolismo
16.
Curr Biol ; 18(8): 607-13, 2008 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-18403203

RESUMEN

Malaria, which is caused by Plasmodium parasites, is transmitted by anopheline mosquitoes. When gametocytes, the precursor cells of Plasmodium gametes, are transferred to a mosquito, they fertilize and proliferate, which render the mosquito infectious to the next vertebrate host. Although the fertilization of malaria parasites has been considered as a rational target for transmission-blocking vaccines, the underlying mechanism is poorly understood. Here, we show that the rodent malaria parasite gene Plasmodium berghei GENERATIVE CELL SPECIFIC 1 (PbGCS1) plays a central role in its gametic interaction. PbGCS1 knockout parasites show male sterility, resulting in unsuccessful fertilization. Because such a male-specific function of GCS1 has been observed in angiosperms, this indicates, for the first time, that parasite sexual reproduction is controlled by a machinery common to flowering plants. Our present findings provide a new viewpoint for understanding the parasitic fertilization system and important clues for novel strategies to attack life-threatening parasites.


Asunto(s)
Fertilización/fisiología , Infertilidad Masculina/genética , Proteínas de Plantas/genética , Plasmodium berghei/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Femenino , Células Germinativas/metabolismo , Magnoliopsida/genética , Malaria/transmisión , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas de Plantas/fisiología , Plasmodium berghei/metabolismo , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/fisiología
17.
J Electron Microsc (Tokyo) ; 60 Suppl 1: S117-36, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21844584

RESUMEN

It is generally believed that the cell cycle consists essentially of the mitotic cycle, which involves mitosis and cytokinesis. These processes are becoming increasingly well understood at the molecular level. However, successful cell reproduction requires duplication and segregation (inheritance) of all of the cellular contents, including not only the cell-nuclear genome but also intracellular organelles. Eukaryotic cells contain at least three types of double membrane-bounded organelles (cell nucleus, mitochondria and plastids), four types of single membrane-bounded organelles (endoplasmic reticulum, Golgi apparatus, lysosomes and microbodies) and the cytoskeleton, which comprises tubulin-based structures (including microtubules, centrosome and spindle) and actin microfilaments. These membrane-bounded organelles cannot be formed de novo and daughter organelles must be inherited from parent organelles during cell cycle. Regulation of organelle division and its coordination with the progression of the cell cycle involves a sequence of events that are subjected to precise spatio-temporal control. Considering that the cells of higher animals and plants contain many organelles which tend to behave somewhat randomly, there is little information concerning the division and inheritance of these double- and single-membrane-bounded organelles during the cell cycle. Here, we summarize the current cytological and morphological knowledge of the cell cycle, including the division cycles of seven membrane-bounded and some non-membrane-bounded organelles. The underlying mechanisms and the biological relevance of these processes are discussed, particularly with respect to cells of the primitive alga Cyanidioschyzon merolae that have a minimum of organelles. We discuss unsolved problems and future perspectives opened by recent studies.


Asunto(s)
Ciclo Celular/fisiología , División Celular , Mitosis/fisiología , Animales , Centrosoma/fisiología , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/fisiología , Citocinesis , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/fisiología , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Rhodophyta/citología
18.
Protoplasma ; 258(1): 129-138, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32968871

RESUMEN

During pollen maturation, various organelles change their distribution and function during development as male gametophytes. We analyzed the behavior of lipid bodies and vacuoles involved in lipophagy in Arabidopsis pollen using serial section SEM and conventional TEM. At the bicellular pollen stage, lipid bodies in the vegetative cells lined up at the surface of the generative cell. Vacuoles then tightly attached, drew in, and degraded the lipid bodies and eventually occupied the space of the lipid bodies. Degradation of lipid began before transfer of the entire contents of the lipid body. At the tricellular stage, vacuoles instead of lipid bodies surrounded the sperm cells. The degradation of lipid bodies is morphologically considered microautophagy. The atg2-1 Arabidopsis mutant is deficient in one autophagy-related gene (ATG). In this mutant, the assembly of vacuoles around sperm cells was sparser than that in wild-type pollen. The deficiency of ATG2 likely prevents or slows lipid degradation, although it does not prevent contact between organelles. These results demonstrate the involvement of microlipophagy in the pollen development of Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Gotas Lipídicas/metabolismo , Polen/química , Espermatozoides/metabolismo , Vacuolas/ultraestructura , Animales , Masculino
19.
Plant J ; 60(5): 882-93, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19709388

RESUMEN

Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate-rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF-MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density-gradient ultracentrifugation. The vacuole-containing fraction was subjected to SDS-PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non-lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o-methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin-tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.


Asunto(s)
Proteínas Algáceas/metabolismo , Rhodophyta/metabolismo , Vacuolas/metabolismo , Proteínas Algáceas/análisis , Proteínas Algáceas/química , Electroforesis en Gel de Poliacrilamida , Genoma , Polifosfatos/metabolismo , Proteoma , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Vacuolas/química , Vacuolas/ultraestructura
20.
Plant Cell Physiol ; 51(5): 682-93, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20385610

RESUMEN

The storage glucans of Cyanidioschyzon merolae [clade L-1 (cyanidian algae), order Porphyridiales, subclass Bangiophycidae], which is considered to be one of the most primitive rhodophytes, were analyzed to understand the early evolution of the glucan structure in the Rhodophyta. Chain-length distribution analysis of the glucans of cyanidian algae demonstrated that while the glucans of Cyanidium caldarium and Galdieria sulphuraria are of the glycogen type, those of C. merolae are of the semiamylopectin type, as in other lineages of the Rhodophyta. Gel permeation chromatography, however, showed that the glucans of C. merolae do not include amylose, being different from those of other Bangiophycidae species. Identification by MALDI-TOF-MS and enzyme assaying of glucan granule-bound proteins indicated that phosphorylase, but not starch synthase, is included. Thus, C. merolae has an unusual glucan and bound-protein composition for the Bangiophycidae, appearing to be a member of the Florideophycidae. The finding that the alga does not contain amylose or the related enzyme, granule-bound starch synthase, is, however, consistent with previously reported results of molecular phylogenetic analysis of starch synthases. Our results support an evolutionary scenario defined by the loss of starch and reversion to glycogen synthesis during the evolution of cyanidian algae, and suggest the possibility that a C. merolae-like primitive rhodophyte might have evolved into the Florideophycidae.


Asunto(s)
Amilopectina/química , Glucanos/química , Rhodophyta/química , Amilosa , Cromatografía en Gel , Pruebas de Enzimas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Almidón Fosforilasa/análisis , Almidón Sintasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA