Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nature ; 549(7670): 66-69, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28880294

RESUMEN

The most intense auroral emissions from Earth's polar regions, called discrete for their sharply defined spatial configurations, are generated by a process involving coherent acceleration of electrons by slowly evolving, powerful electric fields directed along the magnetic field lines that connect Earth's space environment to its polar regions. In contrast, Earth's less intense auroras are generally caused by wave scattering of magnetically trapped populations of hot electrons (in the case of diffuse aurora) or by the turbulent or stochastic downward acceleration of electrons along magnetic field lines by waves during transitory periods (in the case of broadband or Alfvénic aurora). Jupiter's relatively steady main aurora has a power density that is so much larger than Earth's that it has been taken for granted that it must be generated primarily by the discrete auroral process. However, preliminary in situ measurements of Jupiter's auroral regions yielded no evidence of such a process. Here we report observations of distinct, high-energy, downward, discrete electron acceleration in Jupiter's auroral polar regions. We also infer upward magnetic-field-aligned electric potentials of up to 400 kiloelectronvolts, an order of magnitude larger than the largest potentials observed at Earth. Despite the magnitude of these upward electric potentials and the expectations from observations at Earth, the downward energy flux from discrete acceleration is less at Jupiter than that caused by broadband or stochastic processes, with broadband and stochastic characteristics that are substantially different from those at Earth.

2.
Geophys Res Lett ; 49(16): e2022GL099237, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36249464

RESUMEN

A new radio component namely Saturn Anomalous Myriametric Radiation (SAM) is reported. A total of 193 SAM events have been identified by using all the Cassini Saturn orbital data. SAM emissions are L-O mode radio emission and occasionally accompanied by a first harmonic in R-X mode. SAM's intensities decrease with increasing distance from Saturn, suggesting a source near Saturn. SAM has a typical central frequency near 13 kHz, a bandwidth greater than 8 kHz and usually drifts in frequency over time. SAM's duration can extend to near 11 hr and even longer. These features distinguish SAM from the regular narrowband emissions observed in the nearby frequency range, hence the name anomalous. The high occurrence rate of SAM after low frequency extensions of Saturn Kilometric Radiation and the SAM cases observed during compressions of Saturn's magnetosphere suggest a special connection to solar wind dynamics and magnetospheric conditions at Saturn.

3.
Geophys Res Lett ; 49(23): e2022GL098591, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37034392

RESUMEN

The Juno Waves instrument measured plasma waves associated with Ganymede's magnetosphere during its flyby on 7 June, day 158, 2021. Three distinct regions were identified including a wake, and nightside and dayside regions in the magnetosphere distinguished by their electron densities and associated variability. The magnetosphere includes electron cyclotron harmonic emissions including a band at the upper hybrid frequency, as well as whistler-mode chorus and hiss. These waves likely interact with energetic electrons in Ganymede's magnetosphere by pitch angle scattering and/or accelerating the electrons. The wake is accentuated by low-frequency turbulence and electrostatic solitary waves. Radio emissions observed before and after the flyby likely have their source in Ganymede's magnetosphere.

4.
Geophys Res Lett ; 49(9): e2022GL098741, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35859815

RESUMEN

Two distinct proton populations are observed over Jupiter's southern polar cap: a ∼1 keV core population and ∼1-300 keV dispersive conic population at 6-7 RJ planetocentric distance. We find the 1 keV core protons are likely the seed population for the higher-energy dispersive conics, which are accelerated from a distance of ∼3-5 RJ. Transient wave-particle heating in a "pressure-cooker" process is likely responsible for this proton acceleration. The plasma characteristics and composition during this period show Jupiter's polar-most field lines can be topologically closed, with conjugate magnetic footpoints connected to both hemispheres. Finally, these observations demonstrate energetic protons can be accelerated into Jupiter's magnetotail via wave-particle coupling.

5.
Earth Planets Space ; 72(1): 111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831576

RESUMEN

We investigate the longitudinal structure of the oxygen torus in the inner magnetosphere for a specific event found on 12 September 2017, using simultaneous observations from the Van Allen Probe B and Arase satellites. It is found that Probe B observed a clear enhancement in the average plasma mass (M) up to 3-4 amu at L = 3.3-3.6 and magnetic local time (MLT) = 9.0 h. In the afternoon sector at MLT ~ 16.0 h, both Probe B and Arase found no clear enhancements in M. This result suggests that the oxygen torus does not extend over all MLT but is skewed toward the dawn. Since a similar result has been reported for another event of the oxygen torus in a previous study, a crescent-shaped torus or a pinched torus centered around dawn may be a general feature of the O+ density enhancement in the inner magnetosphere. We newly find that an electromagnetic ion cyclotron (EMIC) wave in the H+ band appeared coincidently with the oxygen torus. From the lower cutoff frequency of the EMIC wave, the ion composition of the oxygen torus is estimated to be 80.6% H+, 3.4% He+, and 16.0% O+. According to the linearized dispersion relation for EMIC waves, both He+ and O+ ions inhibit EMIC wave growth and the stabilizing effect is stronger for He+ than O+. Therefore, when the H+ fraction or M is constant, the denser O+ ions are naturally accompanied by the more tenuous He+ ions, resulting in a weaker stabilizing effect (i.e., larger growth rate). From the Probe B observations, we find that the growth rate becomes larger in the oxygen torus than in the adjacent regions in the plasma trough and the plasmasphere.

6.
Geophys Res Lett ; 46(1): 19-27, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30828110

RESUMEN

We compare electron and UV observations mapping to the same location in Jupiter's northern polar region, poleward of the main aurora, during Juno perijove 5. Simultaneous peaks in UV brightness and electron energy flux are identified when observations map to the same location at the same time. The downward energy flux during these simultaneous observations was not sufficient to generate the observed UV brightness; the upward energy flux was. We propose that the primary acceleration region is below Juno's altitude, from which the more intense upward electrons originate. For the complete interval, the UV brightness peaked at ~240 kilorayleigh (kR); the downward and upward energy fluxes peaked at 60 and 700 mW/m2, respectively. Increased downward energy fluxes are associated with increased contributions from tens of keV electrons. These observations provide evidence that bidirectional electron beams with broad energy distributions can produce tens to hundreds of kilorayleigh polar UV emissions.

7.
Nature ; 504(7480): 411-4, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24352287

RESUMEN

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt, but are inconsistent with acceleration by inward radial diffusive transport. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth's outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.

8.
Geophys Res Lett ; 44(15): 7668-7675, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28989207

RESUMEN

Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h.

9.
Nature ; 475(7354): 75-7, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21734705

RESUMEN

Lightning discharges in Saturn's atmosphere emit radio waves with intensities about 10,000 times stronger than those of their terrestrial counterparts. These radio waves are the characteristic features of lightning from thunderstorms on Saturn, which last for days to months. Convective storms about 2,000 kilometres in size have been observed in recent years at planetocentric latitude 35° south (corresponding to a planetographic latitude of 41° south). Here we report observations of a giant thunderstorm at planetocentric latitude 35° north that reached a latitudinal extension of 10,000 kilometres-comparable in size to a 'Great White Spot'-about three weeks after it started in early December 2010. The visible plume consists of high-altitude clouds that overshoot the outermost ammonia cloud layer owing to strong vertical convection, as is typical for thunderstorms. The flash rates of this storm are about an order of magnitude higher than previous ones, and peak rates larger than ten per second were recorded. This main storm developed an elongated eastward tail with additional but weaker storm cells that wrapped around the whole planet by February 2011. Unlike storms on Earth, the total power of this storm is comparable to Saturn's total emitted power. The appearance of such storms in the northern hemisphere could be related to the change of seasons, given that Saturn experienced vernal equinox in August 2009.

10.
Geophys Res Lett ; 42(18): 7273-7281, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27667871

RESUMEN

We show the first evidence for locally excited chorus at frequencies below 0.1 fce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5 fce and f/fce decreases rapidly, often to frequencies well below 0.1 fce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution.

11.
Geophys Res Lett ; 41(20): 7011-7018, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26074639

RESUMEN

On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

12.
Geophys Res Lett ; 41(10): 3323-3330, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26074636

RESUMEN

We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

13.
Nature ; 454(7200): 78-80, 2008 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18596804

RESUMEN

Plasma waves are a characteristic feature of shocks in plasmas, and are produced by non-thermal particle distributions that develop in the shock transition layer. The electric fields of these waves have a key role in dissipating energy in the shock and driving the particle distributions back towards thermal equilibrium. Here we report the detection of intense plasma-wave electric fields at the solar wind termination shock. The observations were obtained from the plasma-wave instrument on the Voyager 2 spacecraft. The first evidence of the approach to the shock was the detection of upstream electron plasma oscillations on 1 August 2007 at a heliocentric radial distance of 83.4 au (1 au is the Earth-Sun distance). These narrowband oscillations continued intermittently for about a month until, starting on 31 August 2007 and ending on 1 September 2007, a series of intense bursts of broadband electrostatic waves signalled a series of crossings of the termination shock at a heliocentric radial distance of 83.7 au. The spectrum of these waves is quantitatively similar to those observed at bow shocks upstream of Jupiter, Saturn, Uranus and Neptune.

14.
Nat Commun ; 15(1): 6062, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025850

RESUMEN

The magnetospheric cusp connects the planetary magnetic field to interplanetary space, offering opportunities for charged particles to precipitate to or escape from the planet. Terrestrial cusps are typically found near noon local time, but the characteristics of the Jovian cusp are unknown. Here we show direct evidence of Jovian cusps using datasets from multiple instruments onboard Juno spacecraft. We find that the cusps of Jupiter are in the dusk sector, which is contradicting Earth-based predictions of a near-noon location. Nevertheless, the characteristics of charged particles in the Jovian cusps resemble terrestrial and Saturnian cusps, implying similar cusp microphysics exist across different planets. These results demonstrate that while the basic physical processes may operate similarly to those at Earth, Jupiter's rapid rotation and its location in the heliosphere can dramatically change the configuration of the cusp. This work provides useful insights into the fundamental consequences of star-planet interactions, highlighting how planetary environments and rotational dynamics influence magnetospheric structures.

15.
Space Sci Rev ; 219(4): 28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123883

RESUMEN

We provide a post-mission assessment of the science and data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation on the NASA Van Allen Probes mission. An overview of important scientific results is presented, covering all of the key wave modes and DC magnetic fields measured by EMFISIS. Discussion of the data products, which are publicly available, follows to provide users with guidance on characteristics and known issues of the measurements. We present guidance on the correct use of derived products, in particular, the wave-normal analysis (WNA) which yields fundamental wave properties such as polarization, ellipticity, and Poynting flux. We also give information about the plasma density derived from measuring the upper hybrid line in the inner magnetosphere.

16.
Space Sci Rev ; 219(2): 18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874191

RESUMEN

A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.

17.
Space Sci Rev ; 218(4): 35, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664862

RESUMEN

The Voyager spacecraft have left the heliosphere and entered the interstellar medium, making the first observations of the termination shock, heliosheath, and heliopause. New Horizons is observing the solar wind in the outer heliosphere and making the first direct observations of solar wind pickup ions. This paper reviews the observations of the solar wind plasma and magnetic fields throughout the heliosphere and in the interstellar medium.

18.
Space Sci Rev ; 218(4): 27, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574274

RESUMEN

Large-scale disturbances generated by the Sun's dynamics first propagate through the heliosphere, influence the heliosphere's outer boundaries, and then traverse and modify the very local interstellar medium (VLISM). The existence of shocks in the VLISM was initially suggested by Voyager observations of the 2-3 kHz radio emissions in the heliosphere. A couple of decades later, both Voyagers crossed the definitive edge of our heliosphere and became the first ever spacecraft to sample interstellar space. Since Voyager 1's entrance into the VLISM, it sampled electron plasma oscillation events that indirectly measure the medium's density, increasing as it moves further away from the heliopause. Some of the observed electron oscillation events in the VLISM were associated with the local heliospheric shock waves. The observed VLISM shocks were very different than heliospheric shocks. They were very weak and broad, and the usual dissipation via wave-particle interactions could not explain their structure. Estimates of the dissipation associated with the collisionality show that collisions can determine the VLISM shock structure. According to theory and models, the existence of a bow shock or wave in front of our heliosphere is still an open question as there are no direct observations yet. This paper reviews the outstanding observations recently made by the Voyager 1 and 2 spacecraft, and our current understanding of the properties of shocks/waves in the VLISM. We present some of the most exciting open questions related to the VLISM and shock waves that should be addressed in the future.

19.
J Geophys Res Space Phys ; 127(10): e2022JA030586, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36591321

RESUMEN

The dynamics of the Jovian magnetosphere is controlled by the interplay of the planet's fast rotation, its solar-wind interaction and its main plasma source at the Io torus, mediated by coupling processes involving its magnetosphere, ionosphere, and thermosphere. At the ionospheric level, these processes can be characterized by a set of parameters including conductances, field-aligned currents, horizontal currents, electric fields, transport of charged particles along field lines including the fluxes of electrons precipitating into the upper atmosphere which trigger auroral emissions, and the particle and Joule heating power dissipation rates into the upper atmosphere. Determination of these key parameters makes it possible to estimate the net transfer of momentum and energy between Jovian upper atmosphere and equatorial magnetosphere. A method based on a combined use of Juno multi-instrument data and three modeling tools was developed by Wang et al. (2021, https://doi.org/10.1029/2021ja029469) and applied to an analysis of the first nine orbits to retrieve these parameters along Juno's magnetic footprint. We extend this method to the first 30 Juno science orbits and to both hemispheres. Our results reveal a large variability of these parameters from orbit to orbit and between the two hemispheres. They also show dominant trends. Southern current systems are consistent with the generation of a region of sub-corotating ionospheric plasma flows, while both super-corotating and sub-corotating plasma flows are found in the north. These results are discussed in light of the previous space and ground-based observations and currently available models of plasma convection and current systems, and their implications are assessed.

20.
J Geophys Res Space Phys ; 127(8): e2022JA030334, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36247326

RESUMEN

The Juno spacecraft's polar orbits have enabled direct sampling of Jupiter's low-altitude auroral field lines. While various data sets have identified unique features over Jupiter's main aurora, they are yet to be analyzed altogether to determine how they can be reconciled and fit into the bigger picture of Jupiter's auroral generation mechanisms. Jupiter's main aurora has been classified into distinct "zones", based on repeatable signatures found in energetic electron and proton spectra. We combine fields, particles, and plasma wave data sets to analyze Zone-I and Zone-II, which are suggested to carry upward and downward field-aligned currents, respectively. We find Zone-I to have well-defined boundaries across all data sets. H+ and/or H3 + cyclotron waves are commonly observed in Zone-I in the presence of energetic upward H+ beams and downward energetic electron beams. Zone-II, on the other hand, does not have a clear poleward boundary with the polar cap, and its signatures are more sporadic. Large-amplitude solitary waves, which are reminiscent of those ubiquitous in Earth's downward current region, are a key feature of Zone-II. Alfvénic fluctuations are most prominent in the diffuse aurora and are repeatedly found to diminish in Zone-I and Zone-II, likely due to dissipation, at higher altitudes, to energize auroral electrons. Finally, we identify significant electron density depletions, by up to 2 orders of magnitude, in Zone-I, and discuss their important implications for the development of parallel potentials, Alfvénic dissipation, and radio wave generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA