Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(1): 242-260.e29, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31155234

RESUMEN

Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.


Asunto(s)
Miocardio/metabolismo , Biosíntesis de Proteínas , Adolescente , Adulto , Anciano , Animales , Codón/genética , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Sistemas de Lectura Abierta/genética , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ribosomas/genética , Ribosomas/metabolismo , Adulto Joven
2.
Cell Mol Life Sci ; 80(9): 265, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615749

RESUMEN

Transient receptor potential cation channel-6 (TRPC6) gene mutations cause familial focal segmental glomerulosclerosis (FSGS), which is inherited as an autosomal dominant disease. In patients with TRPC6-related FSGS, all mutations map to the N- or C-terminal TRPC6 protein domains. Thus far, the majority of TRPC6 mutations are missense resulting in increased or decreased calcium influx; however, the fundamental molecular mechanisms causing cell injury and kidney pathology are unclear. We report a novel heterozygous TRPC6 mutation (V691Kfs*) in a large kindred with no signs of FSGS despite a largely truncated TRPC6 protein. We studied the molecular effects of V691Kfs* TRPC6 mutant using the tridimensional cryo-EM structure of the tetrameric TRPC6 protein. The results indicated that V691 is localized at the pore-forming transmembrane region affecting the ion conduction pathway, and predicted that V691Kfs* causes closure of the ion-conducting pathway leading to channel inactivation. We assessed the impact of V691Kfs* and two previously reported TRPC6 disease mutants (P112Q and G757D) on calcium influx in cells. Our data show that the V691Kfs* fully inactivated the TRCP6 channel-specific calcium influx consistent with a complete loss-of-function phenotype. Furthermore, the V691Kfs* truncation exerted a dominant negative effect on the full-length TRPC6 proteins. In conclusion, the V691Kfs* non-functional truncated TRPC6 is not sufficient to cause FSGS. Our data corroborate recently characterized TRPC6 loss-of-function and gain-of-function mutants suggesting that one defective TRPC6 gene copy is not sufficient to cause FSGS. We underscore the importance of increased rather than reduced calcium influx through TRPC6 for podocyte cell death.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Humanos , Glomeruloesclerosis Focal y Segmentaria/genética , Canal Catiónico TRPC6/genética , Calcio , Mutación con Pérdida de Función , Mutación/genética
3.
Dermatology ; 238(2): 236-243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34077928

RESUMEN

BACKGROUND: Hidradenitis suppurativa/acne inversa (HS) is a chronic, recurrent inflammatory skin disease. Its pivotal pathogenetic event is believed to be the occlusion of the hair follicle generating a perifollicular lympho-histiocytic inflammation. However, knowledge of the exact HS pathogenesis requires further research. OBJECTIVE: To develop a human HS model applicable in preclinical research which could help to understand the pathophysiology of HS and to determine the action of therapeutic candidates. METHODS: The 3D-SeboSkin technology was applied to maintain explants of involved and uninvolved skin of HS patients ex vivo for 3 days. Detection of differential expression of previously detected HS biomarkers was performed by immunohistochemistry in a group of female patients (n = 9, mean age 37.2 ± 8.4 years). RESULTS: The application of the 3D-SeboSkin model preserved the structural integrity of lesional and perilesional HS skin ex vivo, as previously described for healthy skin. Moreover, the HS 3D-SeboSkin setting maintained the differential expression and pattern of several HS biomarkers (S100A9, KRT16, SERPINB3) in epidermal and dermal tissue and the appendages. CONCLUSION: We have validated HS 3D-SeboSkin as a reproducible, human model, which is appropriate for preclinical lesional and perilesional HS skin studies ex vivo.


Asunto(s)
Dermatitis , Hidradenitis Supurativa , Adulto , Dermatitis/patología , Epidermis/metabolismo , Femenino , Hidradenitis Supurativa/diagnóstico , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Piel/patología
4.
Cancer Immunol Immunother ; 69(7): 1307-1313, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32193699

RESUMEN

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) are rare aggressive sarcomas with poor prognosis. More than half of MPNSTs develop from benign precursor tumors associated with neurofibromatosis type 1 (NF1) which is a tumor suppressor gene disorder. Early detection of malignant transformation in NF1 patients is pivotal to improving survival. The primary aim of this study was to evaluate the role of immuno-modulators as candidate biomarkers of malignant transformation in NF1 patients with plexiform neurofibromas as well as predictors of response to immunotherapeutic approaches. METHODS: Sera from a total of 125 NF1 patients with quantified internal tumor load were included, and 25 of them had MPNSTs. A total of six immuno-modulatory factors (IGFBP-1, PD-L1, IFN-α, GM-CSF, PGE-2, and AXL) were measured in these sera using respective ELISA. RESULTS: NF1 patients with MPNSTs had significantly elevated PD-L1 levels in their sera compared to NF1 patients without MPNSTs. By contrast, AXL concentrations were significantly lower in sera of NF1-MPNST patients. IGFBP-1 and PGE2 serum levels did not differ between the two patient groups. IFN-α and GM-CSF were below the detectable level in most samples. CONCLUSION: The immuno-modulator PD-L1 is upregulated in MPNST patients and therefore may provide as a potential biomarker of malignant transformation in patients with NF1 and as a response predictor for immunotherapeutic approaches.


Asunto(s)
Antígeno B7-H1/sangre , Biomarcadores de Tumor/sangre , Neurofibrosarcoma/sangre , Neurofibrosarcoma/patología , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Pronóstico , Carga Tumoral
5.
Stem Cells ; 37(9): 1130-1135, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31021472

RESUMEN

This report summarizes the recent activity of the International Stem Cell Banking Initiative held at Harvard Stem Cell Institute, Boston, MA, USA, on June 18, 2017. In this meeting, we aimed to find consensus on ongoing issues of quality control (QC), safety, and efficacy of human pluripotent stem cell banks and their derivative cell therapy products for the global harmonization. In particular, assays for the QC testing such as pluripotency assays test and general QC testing criteria were intensively discussed. Moreover, the recent activities of global stem cell banking centers and the regulatory bodies were briefly summarized to provide an overview on global developments and issues. Stem Cells 2019;37:1130-1135.


Asunto(s)
Células Madre Pluripotentes/citología , Células Madre/citología , Bancos de Tejidos/normas , Boston , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología , Cooperación Internacional , Control de Calidad
6.
Cell Mol Life Sci ; 76(1): 179-192, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30310934

RESUMEN

Human pluripotent stem cells (hPSCs) provide a source for the generation of defined kidney cells and renal organoids applicable in regenerative medicine, disease modeling, and drug screening. These applications require the provision of hPSC-derived renal cells by reproducible, scalable, and efficient methods. We established a chemically defined protocol by application of Activin A, BMP4, and Retinoic acid followed by GDNF, which steered hPSCs to the renal lineage and resulted in populations of SIX2+/CITED1+ metanephric mesenchyme- (MM) and of HOXB7+/GRHL2+ ureteric bud (UB)-like cells already by 6 days. Transcriptome analysis corroborated that the PSC-derived cell types at day 8 resemble their renal vesicle and ureteric epithelial counterpart in vivo, forming tubular and glomerular renal cells 6 days later. We demonstrate that starting from hPSCs, our in vitro protocol generates a pool of nephrogenic progenitors at the renal vesicle stage, which can be further directed into specialized nephronal cell types including mesangial-, proximal tubular-, distal tubular, collecting duct epithelial cells, and podocyte precursors after 14 days. This simple and rapid method to produce renal cells from a common precursor pool in 2D culture provides the basis for scaled-up production of tailored renal cell types, which are applicable for drug testing or cell-based regenerative therapies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Nefronas/citología , Células Madre Pluripotentes/citología , Activinas/farmacología , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Humanos , Nefronas/efectos de los fármacos , Nefronas/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Transcriptoma/efectos de los fármacos , Tretinoina/farmacología
7.
Stem Cells ; 36(10): 1552-1566, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30004605

RESUMEN

Although autologous induced pluripotent stem cells (iPSCs) can potentially be useful for treating patients without immune rejection, in reality it will be extremely expensive and labor-intensive to make iPSCs to realize personalized medicine. An alternative approach is to make use of human leukocyte antigen (HLA) haplotype homozygous donors to provide HLA matched iPSC products to significant numbers of patients. To establish a haplobank of iPSCs, we repurposed the cord blood bank by screening ∼4,200 high resolution HLA typed cord blood samples, and selected those homozygous for the 10 most frequent HLA-A,-B,-DRB1 haplotypes in the Korean population. Following the generation of 10 iPSC lines, we conducted a comprehensive characterization, including morphology, expression of pluripotent markers and cell surface antigens, three-germ layer formation, vector clearance, mycoplasma/microbiological/viral contamination, endotoxin, and short tandem repeat (STR) assays. Various genomic analyses using microarray and comparative genomic hybridization (aCGH)-based single nucleotide polymorphism (SNP) and copy number variation (CNV) were also conducted. These 10 HLA-homozygous iPSC lines match 41.07% of the Korean population. Comparative analysis of HLA population data shows that they are also of use in other Asian populations, such as Japan, with some limited utility in ethnically diverse populations, such as the UK. Taken together, the generation of the 10 most frequent Korean HLA-homozygous iPSC lines serves as a useful pointer for the development of optimal methods for iPSC generation and quality control and indicates the benefits and limitations of collaborative HLA driven selection of donors for future stocking of worldwide iPSC haplobanks. Stem Cells 2018;36:1552-1566.


Asunto(s)
Almacenamiento de Sangre/métodos , Inestabilidad Genómica/genética , Antígenos HLA/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Haplotipos , Antígenos de Histocompatibilidad Clase II , Humanos
8.
Nucleic Acids Res ; 44(D1): D757-63, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26400179

RESUMEN

The human pluripotent stem cell registry (hPSCreg), accessible at http://hpscreg.eu, is a public registry and data portal for human embryonic and induced pluripotent stem cell lines (hESC and hiPSC). Since their first isolation the number of hESC lines has steadily increased to over 3000 and new iPSC lines are generated in a rapidly growing number of laboratories as a result of their potentially broad applicability in biomedicine and drug testing. Many of these lines are deposited in stem cell banks, which are globally established to store tens of thousands of lines from healthy and diseased donors. The Registry provides comprehensive and standardized biological and legal information as well as tools to search and compare information from multiple hPSC sources and hence addresses a translational research need. To facilitate unambiguous identification over different resources, hPSCreg automatically creates a unique standardized name for each cell line registered. In addition to biological information, hPSCreg stores extensive data about ethical standards regarding cell sourcing and conditions for application and privacy protection. hPSCreg is the first global registry that holds both, manually validated scientific and ethical information on hPSC lines, and provides access by means of a user-friendly, mobile-ready web application.


Asunto(s)
Línea Celular , Células Madre Embrionarias , Células Madre Pluripotentes Inducidas , Sistema de Registros , Humanos , Internet
9.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30321994

RESUMEN

Bioprinting is a novel technology that may help to overcome limitations associated with two-dimensional (2D) cell cultures and animal experiments, as it allows the production of three-dimensional (3D) tissue models composed of human cells. The present study describes the optimization of a bioink composed of alginate, gelatin and human extracellular matrix (hECM) to print human HepaRG liver cells with a pneumatic extrusion printer. The resulting tissue model was tested for its suitability for the study of transduction by an adeno-associated virus (AAV) vector and infection with human adenovirus 5 (hAdV5). We found supplementation of the basic alginate/gelatin bioink with 0.5 and 1 mg/mL hECM provides desirable properties for the printing process, the stability of the printed constructs, and the viability and metabolic functions of the printed HepaRG cells. The tissue models were efficiently transduced by AAV vectors of serotype 6, which successfully silenced an endogenous target (cyclophilin B) by means of RNA interference. Furthermore, the printed 3D model supported efficient adenoviral replication making it suitable to study virus biology and develop new antiviral compounds. We consider the approach described here paradigmatic for the development of 3D tissue models for studies including viral vectors and infectious viruses.


Asunto(s)
Bioimpresión/métodos , Hígado/citología , Impresión Tridimensional/instrumentación , Ingeniería de Tejidos/métodos , Alginatos/química , Bioimpresión/instrumentación , Línea Celular , Supervivencia Celular , Matriz Extracelular/química , Gelatina/química , Humanos , Modelos Biológicos , Andamios del Tejido
10.
Cancer Immunol Immunother ; 65(9): 1113-21, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27448806

RESUMEN

Neurofibromatosis type 1 (NF1) is a hereditary tumor syndrome caused by mutations of the NF1 gene and resulting dysregulation of the Ras-pathway. In addition to peripheral nerve tumors, affected tissues include the musculoskeletal and cardiovascular system. The immune system has recently been suggested as a possible modulator NF1-related phenotypes. Therefore, we determined the immune phenotype in NF1 patients and investigated its relationship with the phenotypic severity of NF1-related tumor manifestations. We quantified global leukocytes and lymphocyte subpopulations of peripheral blood from 37 NF1 patients and 21 healthy controls by flow cytometry. To associate immune phenotype with tumor phenotype, all NF1 patients underwent whole-body magnetic resonance imaging and total internal tumor volume was calculated. The immunophenotypes were compared among four NF1 groups with different total internal tumor burdens and between NF1 patients and non-NF1 subjects. We found that NF1 patients show a generalized lymphopenia. Closer analysis revealed that the CD8(+)/CD27(-) and CD8(+)/CD57(+) effector T cell fractions strongly increase in NF1 patients with low tumor load and decrease to levels below control in patients with high tumor load. Moreover, increased production of IL2, IFN-γ and TNF-α was found in T cells of NF1 patients upon phorbol-12-myristate acetate (PMA) stimulation compared to healthy controls. The data indicate that decreasing CD8(+)/CD57(+) and CD27(-) T cell fractions correspond to increasing tumor load in NF1 patients, potentially making these populations useful marker for internal tumor burden.


Asunto(s)
Neurofibromatosis 1/inmunología , Neurofibromatosis 1/patología , Linfocitos T/clasificación , Linfocitos T/inmunología , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Linfocitos T/patología , Carga Tumoral , Adulto Joven
11.
Bioinformatics ; 31(5): 794-6, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25344497

RESUMEN

UNLABELLED: Advancing technologies generate large amounts of molecular and phenotypic data on cells, tissues and organisms, leading to an ever-growing detail and complexity while information retrieval and analysis becomes increasingly time-consuming. The Semantic Body Browser is a web application for intuitively exploring the body of an organism from the organ to the subcellular level and visualising expression profiles by means of semantically annotated anatomical illustrations. It is used to comprehend biological and medical data related to the different body structures while relying on the strong pattern recognition capabilities of human users. AVAILABILITY AND IMPLEMENTATION: The Semantic Body Browser is a JavaScript web application that is freely available at http://sbb.cellfinder.org. The source code is provided on https://github.com/flekschas/sbb.


Asunto(s)
Gráficos por Computador , Expresión Génica , Cuerpo Humano , Programas Informáticos , Humanos , Almacenamiento y Recuperación de la Información , Internet , Masculino , Semántica
12.
Cell Mol Life Sci ; 72(23): 4671-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26109426

RESUMEN

Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.


Asunto(s)
Proteínas Aviares/genética , Virus del Sarcoma Aviar/genética , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/virología , Receptores Virales/genética , Proteínas Aviares/metabolismo , Virus del Sarcoma Aviar/patogenicidad , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Elementos Transponibles de ADN , Citometría de Flujo/métodos , Vectores Genéticos , Humanos , Células Madre Pluripotentes Inducidas/citología , Receptores Virales/metabolismo
13.
Nucleic Acids Res ; 42(Database issue): D950-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24304896

RESUMEN

CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue types from RNA-seq and microarrays and 553 905 protein expressions for 535 cells/tissues. Text mining of a corpus of >2000 publications followed by manual curation confirmed expression information on ∼900 proteins and genes. CellFinder's data model is capable to seamlessly represent entities from single cells to the organ level, to incorporate mappings between homologous entities in different species and to describe processes of cell development and differentiation. Its ontological backbone currently consists of 204 741 ontology terms incorporated from 10 different ontologies unified under the novel CELDA ontology. CellFinder's web portal allows searching, browsing and comparing the stored data, interactive construction of developmental trees and navigating the partonomic hierarchy of cells and tissues through a unique body browser designed for life scientists and clinicians.


Asunto(s)
Células/metabolismo , Bases de Datos Factuales , Animales , Línea Celular , Fenómenos Fisiológicos Celulares , Células/citología , Estructuras Celulares/ultraestructura , Minería de Datos , Perfilación de la Expresión Génica , Humanos , Internet , Riñón/citología , Hígado/citología , Proteínas/metabolismo , ARN/metabolismo
14.
BMC Genomics ; 16: 645, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26314578

RESUMEN

BACKGROUND: Identification of marker genes associated with a specific tissue/cell type is a fundamental challenge in genetic and cell research. Marker genes are of great importance for determining cell identity, and for understanding tissue specific gene function and the molecular mechanisms underlying complex diseases. RESULTS: We have developed a new bioinformatics tool called MGFM (Marker Gene Finder in Microarray data) to predict marker genes from microarray gene expression data. Marker genes are identified through the grouping of samples of the same type with similar marker gene expression levels. We verified our approach using two microarray data sets from the NCBI's Gene Expression Omnibus public repository encompassing samples for similar sets of five human tissues (brain, heart, kidney, liver, and lung). Comparison with another tool for tissue-specific gene identification and validation with literature-derived established tissue markers established functionality, accuracy and simplicity of our tool. Furthermore, top ranked marker genes were experimentally validated by reverse transcriptase-polymerase chain reaction (RT-PCR). The sets of predicted marker genes associated with the five selected tissues comprised well-known genes of particular importance in these tissues. The tool is freely available from the Bioconductor web site, and it is also provided as an online application integrated into the CellFinder platform ( http://cellfinder.org/analysis/marker ). CONCLUSIONS: MGFM is a useful tool to predict tissue/cell type marker genes using microarray gene expression data. The implementation of the tool as an R-package as well as an application within CellFinder facilitates its use.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Marcadores Genéticos , Ontología de Genes , Estudios de Asociación Genética/métodos , Especificidad de Órganos/genética , Reproducibilidad de los Resultados , Navegador Web
15.
Cytotherapy ; 17(2): 199-214, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25457280

RESUMEN

BACKGROUND AIMS: In Parkinson's disease (PD), neurogenesis in the subventricular zone (SVZ)-olfactory bulb (OB) axis is affected as the result of the lack of dopaminergic innervations reaching the SVZ. This aberrant network has been related to the hyposmia of PD patients, which is an early diagnostic marker of the disease. Consequently, much interest arose in finding mechanisms to modulate the SVZ-OB axis. Direct modulation of this axis could be achieved by transplantation of mesenchymal stromal cells (MSC), as it has been shown in rat and mouse PD models. However, the neurogenic effect of MSC in PD was thus far only analyzed weeks after transplantation, and little is known about effects immediately after transplantation. METHODS: We assessed the acute neuroprotective and neurogenic effects of adipose-derived MSC transplanted into the rat substantia nigra in the 6-hydroxydopamine model of PD. RESULTS: Three days after transplantation, subventricular neurogenesis was significantly increased in MSC-transplanted versus non-transplanted animals. Most MSC were found in the region of the substantia nigra and the surrounding arachnoid mater, expressing S100ß and brain-derived neurotrophic factor, whereas some MSC showed an endothelial phenotype and localized around blood vessels. CONCLUSIONS: The acute neurogenic effects and neurotrophic factor expression of MSC could help to restore the SVZ-OB axis in PD.


Asunto(s)
Tejido Adiposo/citología , Ventrículos Laterales/crecimiento & desarrollo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Neurogénesis/fisiología , Enfermedad de Parkinson/terapia , Adulto , Animales , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Proliferación Celular/efectos de los fármacos , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Ventrículos Laterales/citología , Obesidad/metabolismo , Bulbo Olfatorio/citología , Oxidopamina/efectos adversos , Ratas , Ratas Wistar , Subunidad beta de la Proteína de Unión al Calcio S100/biosíntesis , Sustancia Negra/citología , Adulto Joven
16.
Cell Physiol Biochem ; 34(3): 646-57, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25170622

RESUMEN

BACKGROUND/AIMS: Cell-based therapies may be useful for treating ischemic diseases, but the underlying mechanisms are incompletely understood. We investigated the impact of cord blood mesenchymal stromal cell (CBMSC)- or fibroblast (FB)-secreted factors on starved endothelial cells and determined the relevant intracellular signaling pathways. METHODS: HUVECs were subjected to glucose/serum deprivation (GSD) in hypoxia or normoxia, in presence of CBMSC- or FB-conditioned medium (CM). Viability and proliferation were determined via WST-8 conversion and BrdU incorporation. Apoptosis was quantified by annexin V/ethidium homodimer-III staining, nuclear fragmentation and cell morphology. mRNA expression and protein phosphorylation were determined by real-time qPCR and western blot. Experiments were repeated in presence of small-molecule inhibitors. RESULTS: The negative impact of GSD was most pronounced at 21% O2. Here, medium of CBMSCs and FBs increased viability and proliferation and reduced apoptosis of HUVECs. This was associated with increased STAT3 and ERK1/2 phosphorylation and BCL-2 expression. Under STAT3 inhibition, the beneficial effect of CBMSC-CM on viability and BCL-2 expression was abolished. CONCLUSION: Factors released by CBMSCs protect endothelial cells from the deleterious impact of GSD by activation of the STAT3 survival pathway. However, this phenomenon is not CBMSC-specific and can be reproduced using juvenile fibroblasts.


Asunto(s)
Medios de Cultivo Condicionados , Sangre Fetal/citología , Células Madre Mesenquimatosas/citología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Secuencia de Bases , Cartilla de ADN , Células Endoteliales de la Vena Umbilical Humana , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Stem Cell Res ; 79: 103482, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959701

RESUMEN

The recently issued ISSCR standards in stem cell research recommend registration of human pluripotent stem cell lines (hPSCs). Registration is critical to establishing stem cell provenance and connecting cell lines to data derived on those lines. In this study, we sought to understand common barriers to registration by conducting interviews with forty-eight Australian stem cell stakeholders, including researchers, clinicians, and industry professionals. Australian stem cell researchers do not routinely register their lines, and only a third of those Australian lines captured by an international registry have fully completed the registration process. Most registered Australian cell lines lack complete information about their ethical provenance or key pluripotency characteristics. Incomplete registration is poorly aligned with the goals of open science on which registries are founded. Users also expressed concerns about the quality of the incomplete information provided to the resource. Registration was considered negatively, for instance as a hurdle or barrier to publication, which impacted on user perceptions of usefulness of registration and lowered the likelihood that they would engage with registries to find resources. Broader adoption of registration by journals, and continued advocacy by stem cell societies, will be important levers for awareness and engagement with registration. Although the Australian community represents a small fraction of potential registry users, the results of this study suggest ways for journals, registries, funders, and the international stem cell community to improve registration compliance.


Asunto(s)
Sistema de Registros , Investigadores , Humanos , Australia , Investigación con Células Madre , Línea Celular , Células Madre Pluripotentes/citología
18.
Stem Cell Reports ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39151430

RESUMEN

Governance infrastructures streamline scientific and ethical provenance verification of human pluripotent stem cell (SC) lines. Yet, scientific developments (e.g., SC-derived embryo models, organoids) challenge research governance approaches to stored biospecimens, questioning the validity of informed consent (IC) models. Likewise, e-health platforms are driving major transformations in data processing, prompting a reappraisal of IC. Given these developments, participatory research platforms are identified as effective tools to promote longitudinal engagement, interactive decision-making, and dynamic governance. Learning from European initiatives piloting dynamic IC for biobanking and SC research, this Perspective explores the benefits and challenges of implementing dynamic IC and governance for SC.

19.
Animals (Basel) ; 14(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891588

RESUMEN

The documentation, preservation and rescue of biological diversity increasingly uses living biological samples. Persistent associations between species, biosamples, such as tissues and cell lines, and the accompanying data are indispensable for using, exchanging and benefiting from these valuable materials. Explicit authentication of such biosamples by assigning unique and robust identifiers is therefore required to allow for unambiguous referencing, avoid identification conflicts and maintain reproducibility in research. A predefined nomenclature based on uniform rules would facilitate this process. However, such a nomenclature is currently lacking for animal biological material. We here present a first, standardized, human-readable nomenclature design, which is sufficient to generate unique and stable identifying names for animal cellular material with a focus on wildlife species. A species-specific human- and machine-readable syntax is included in the proposed standard naming scheme, allowing for the traceability of donated material and cultured cells, as well as data FAIRification. Only when it is consistently applied in the public domain, as publications and inter-institutional samples and data are exchanged, distributed and stored centrally, can the risks of misidentification and loss of traceability be mitigated. This innovative globally applicable identification system provides a standard for a sustainable structure for the long-term storage of animal bio-samples in cryobanks and hence facilitates current as well as future species conservation and biomedical research.

20.
BMC Bioinformatics ; 14: 228, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23865855

RESUMEN

BACKGROUND: The need for detailed description and modeling of cells drives the continuous generation of large and diverse datasets. Unfortunately, there exists no systematic and comprehensive way to organize these datasets and their information. CELDA (Cell: Expression, Localization, Development, Anatomy) is a novel ontology for the association of primary experimental data and derived knowledge to various types of cells of organisms. RESULTS: CELDA is a structure that can help to categorize cell types based on species, anatomical localization, subcellular structures, developmental stages and origin. It targets cells in vitro as well as in vivo. Instead of developing a novel ontology from scratch, we carefully designed CELDA in such a way that existing ontologies were integrated as much as possible, and only minimal extensions were performed to cover those classes and areas not present in any existing model. Currently, ten existing ontologies and models are linked to CELDA through the top-level ontology BioTop. Together with 15.439 newly created classes, CELDA contains more than 196.000 classes and 233.670 relationship axioms. CELDA is primarily used as a representational framework for modeling, analyzing and comparing cells within and across species in CellFinder, a web based data repository on cells (http://cellfinder.org). CONCLUSIONS: CELDA can semantically link diverse types of information about cell types. It has been integrated within the research platform CellFinder, where it exemplarily relates cell types from liver and kidney during development on the one hand and anatomical locations in humans on the other, integrating information on all spatial and temporal stages. CELDA is available from the CellFinder website: http://cellfinder.org/about/ontology.


Asunto(s)
Células/clasificación , Vocabulario Controlado , Células/metabolismo , Estructuras Celulares , Células Madre Embrionarias , Expresión Génica , Humanos , Riñón/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA