Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172120, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575031

RESUMEN

The ongoing energy transition from conventional fuels to renewable energy sources (RES) has given nations the potential to achieve levels of energy self-sufficiency previously thought unattainable. RES in the form of utility-scale solar and wind energy are currently the leading alternatives to fossil-fuel generation. Precise location siting that factors in efficiency limitations related to current and future climate variables is essential for enabling the green energy transition envisioned for 2050. In this context, understanding and mapping the intermittency of RES provides insights to energy system operators for their seamless integration into the grid. The Eastern Mediterranean and Middle East (EMME) region has the potential to harness vast amounts of RES. The scarcity of observations from weather station networks and the lack of private sector incentives for transitioning to RES mean that relevant, supporting weather and climate studies have been limited. This study employs the Weather Research and Forecasting model with Chemistry (WRF-CHEM) to estimate the RES technical potential of EMME countries and map the hourly generation profiles per source and country, simulated for the reference year 2015 and considering future conditions. The findings indicate that by 2050, seven countries within the region could transform into net energy exporters, while the remaining nine might remain reliant on energy imports or fossil fuels. Egypt emerges as a "powerhouse", potentially enjoying a potential surplus energy generation of 76 GW per hour, whereas the United Arab Emirates may face an annual deficit of 955 TWh. Further, we derived the hourly generation profiles for wind and solar during different seasons. Four dominant patterns were identified. We find a complementary relationship for six countries, and for four countries, a substitute relationship between solar and wind energy generation. Greece stands out with a near-constant wind energy source, which would facilitate its integration into the national grid.

2.
Sci Rep ; 14(1): 1530, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233477

RESUMEN

Exposure to fine particulate matter (PM2.5) is associated with an increased risk of morbidity and mortality. In Europe, residential fuel combustion and road transport emissions contribute significantly to PM2.5. Toxicological studies indicate that PM2.5 from these sources is relatively more hazardous, owing to its high content of black and organic carbon. Here, we study the contribution of the emissions from these sectors to long-term exposure and excess mortality in Europe. We quantified the impact of anthropogenic carbonaceous aerosols on excess mortality and performed a sensitivity analysis assuming that they are twice as toxic as inorganic particles. We find that total PM2.5 from residential combustion leads to 72,000 (95% confidence interval: 48,000-99,000) excess deaths per year, with about 40% attributed to carbonaceous aerosols. Similarly, road transport leads to about 35,000 (CI 23,000-47,000) excess deaths per year, with 6000 (CI 4000-9000) due to carbonaceous particles. Assuming that carbonaceous aerosols are twice as toxic as other PM2.5 components, they contribute 80% and 37%, respectively, to residential fuel combustion and road transport-related deaths. We uncover robust national variations in the contribution of each sector to excess mortality and emphasize the importance of country-specific emission reduction policies based on national characteristics and sectoral shares.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Aerosoles/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Carbono/análisis , Carbono/toxicidad , Monitoreo del Ambiente , Europa (Continente) , Material Particulado/análisis , Material Particulado/toxicidad
3.
Sci Total Environ ; 901: 165896, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37524173

RESUMEN

Reconciling top-down and bottom-up country-level greenhouse gas emission estimates remains a key challenge in the MRV (Monitoring, Reporting, Verification) paradigm. Here we propose to independently quantify cumulative emissions from a significant number of methane (CH4) emitters at national level and derive robust constraints for the national inventory. Methane emissions in Cyprus, an insular country, stem primarily from waste and agricultural activities. We performed 24 intensive survey days of mobile measurements of CH4 from October 2020 to September 2021 at emission 'hotspots' in Cyprus accounting together for about 28 % of national CH4 emissions. The surveyed areas include a large active landfill (Koshi, 8 % of total emissions), a large closed landfill (Kotsiatis, 18 %), and a concentrated cattle farm area (Aradippou, 2 %). Emission rates for each site were estimated using repeated downwind transects and a Gaussian plume dispersion model. The calculated methane emissions from landfills of Koshi and Kotsiatis (25.9 ± 6.4 Gg yr-1) and enteric fermentation of cattle (10.4 ± 4.4 Gg yr-1) were about 129 % and 40 % larger, respectively than the bottom-up sectorial annual estimates used in the national UNFCCC inventory. The parametrization of the Gaussian plume model dominates the uncertainty in our method, with a typical 21 % uncertainty. Seasonal variations have little influence on the results. We show that using an ensemble of in situ measurements targeting representative methane emission hotspots with consistent temporal and spatial coverage can contribute to the monitoring and validation of national bottom-up emission inventories.

4.
Environ Sci Pollut Res Int ; 29(20): 30193-30205, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34997520

RESUMEN

Physically based computational modeling is an effective tool for estimating and predicting the spatial distribution of pollutant concentrations in complex environments. A detailed and up-to-date emission inventory is one of the most important components of atmospheric modeling and a prerequisite for achieving high model performance. Lebanon lacks an accurate inventory of anthropogenic emission fluxes. In the absence of a clear emission standard and standardized activity datasets in Lebanon, this work serves to fill this gap by presenting the first national effort to develop a national emission inventory by exhaustively quantifying detailed multisector, multi-species pollutant emissions in Lebanon for atmospheric pollutants that are internationally monitored and regulated as relevant to air quality. Following the classification of the Emissions Database for Global Atmospheric Research (EDGAR), we present the methodology followed for each subsector based on its characteristics and types of fuels consumed. The estimated emissions encompass gaseous species (CO, NOx, SO2), and particulate matter (PM2.5 and PM10). We compare totals per sector obtained from the newly developed national inventory with the international EDGAR inventory and previously published emission inventories for the country for base year 2010 presenting current discrepancies and analyzing their causes. The observed discrepancies highlight the fact that emission inventories, especially for data-scarce settings, are highly sensitive to the activity data and their underlying assumptions, and to the methodology used to estimate the emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Líbano , Material Particulado/análisis
5.
Sci Total Environ ; 843: 156861, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35750162

RESUMEN

In late March 2018, a large part of the Eastern Mediterranean experienced an extraordinary episode of African dust, one of the most intense in recent years, here referred to as the "Minoan Red" event. The episode mainly affected the Greek island of Crete, where the highest aerosol concentrations over the past 15 yeas were recorded, although impacts were also felt well beyond this core area. Our study fills a gap in dust research by assessing the multi-sectoral impacts of sand and dust storms and their socioeconomic implications. Specifically, we provide a multi-sectoral impact assessment of Crete during the occurrence of this exceptional African dust event. During the day of the occurrence of the maximum dust concentration in Crete, i.e. March 22nd, 2018, we identified impacts on meteorological conditions, agriculture, transport, energy, society (including closing of schools and cancellation of social events), and emergency response systems. As a result, the event led to a 3-fold increase in daily emergency responses compare to previous days associated with urban emergencies and wildfires, a 3.5-fold increase in hospital visits and admissions for Chronic Obstructive Pulmonary Disease (COPD) exacerbations and dyspnoea, a reduction of visibility causing aircraft traffic disruptions (eleven cancellations and seven delays), and a reduction of solar energy production. We estimate the cost of direct and indirect effects of the dust episode, considering the most affected socio-economic sectors (e.g. civil protection, aviation, health and solar energy production), to be between 3.4 and 3.8 million EUR for Crete. Since such desert dust transport episodes are natural, meteorology-driven and thus to a large extent unavoidable, we argue that the efficiency of actions to mitigate dust impacts depends on the accuracy of operational dust forecasting and the implementation of relevant early warning systems for social awareness.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Aerosoles , Contaminantes Atmosféricos/análisis , Polvo/análisis , Monitoreo del Ambiente , Material Particulado/análisis
6.
Sci Rep ; 10(1): 12635, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724141

RESUMEN

Satellite observations of the Ozone Monitoring Instrument (OMI) for tropospheric sulfur dioxide (SO2) and formaldehyde (HCHO) column mass densities (CMD) are analyzed for the period 2005-2016 over the atmosphere of Kazakhstan. Regarding SO2 the major hot spots relate to regions with high population and large industrial facilities. Such an example is the city of Ekibastuz that hosts the biggest thermal power plants in the country and exhibits the higher SO2 CMD at national level. The annual average CMD in Ekibastuz reaches 2.5 × 10-5 kg/m2, whereas for the rest of the country respective values are 6 times lower. Other hotspots, mostly urban conglomerates such as Almaty and Nur-Sultan, experience high CMDs of SO2 in particular years, such as 2008. One of the main reasons for this behavior is the financial crisis of 2008, forcing the application of alternate heating sources based on cheap low-quality coal. Regarding HCHO, an oxygenated Volatile Organic Compound (VOC), the main hot spot is noticed over the city Atyrau, the oil capital of the country where two massive oil fields are located. The highest HCHO CMD (9 × 1015 molecules/cm2) appears in the summertime due to secondary production as a result of the photo-oxidation of VOCs emitted by industrial sectors, oil refinery plants and vehicles. Strongly elevated HCHO amounts are also observed in Nur-Sultan in 2012 that could be due to the residential coal combustion and vehicle exhaust under poor winter dispersion conditions. Significant reductions in HCHO observed between 2012 and 2015 can be attributed to two significant measures implemented in the country in 2013 that aimed at the improvement of air quality: the introduction of the emission trading system (ETS) for greenhouse gases and Euro-4 standards for new vehicles entering the national vehicle fleet.

7.
Sci Total Environ ; 663: 889-900, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30738268

RESUMEN

Agricultural emissions strongly contribute to fine particulate matter pollution (PM2.5) and associated effects on human health. Environmentally-extended input-output models and a regional atmospheric chemistry model (WRF-Chem) were combined to conduct an economy-wide assessment of air pollution and pre-mature mortality in the European Union (EU), associated with a 20% increase in the final demand for the output of the agricultural sector. Model results revealed significant differences in air pollution originating from agricultural growth across the 28 EU countries (EU-28). The highest impact of agricultural growth on PM2.5 concentrations occur over the Northern Balkan countries (Bulgaria and Romania) and northern Italy. However, the highest excess mortality rates in the EU-28 due to changes in emissions and enhanced PM2.5 concentrations are observed in Malta, Greece, Spain and Cyprus. The least affected countries are mostly located in the northern part of Europe, with the exception of the Scandinavian Countries, which have relatively good air quality under current conditions. Our integrated modelling framework results highlight the importance of capturing both the direct and indirect air pollution emissions of economic sectors via upstream supply chains and underscore the non-linear response of surface PM2.5 levels and their health impacts to emission fluxes.


Asunto(s)
Agricultura , Contaminantes Atmosféricos/análisis , Contaminación del Aire/economía , Exposición a Riesgos Ambientales , Salud Pública , Salud Ambiental , Monitoreo del Ambiente , Europa (Continente) , Humanos , Modelos Teóricos , Material Particulado/análisis
8.
Air Qual Atmos Health ; 12(1): 73-86, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30687413

RESUMEN

We evaluate air quality modeling over the East Mediterranean using the benchmarking methodology developed in the framework of the Forum for Air Quality Modelling in Europe (FAIRMODE). FAIRMODE aims to provide a harmonized approach of model evaluation for regulatory purposes. We test the methodology by assessing the performance of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) against ground-based air quality observations over Cyprus, a member state of the European Union. Two nested domains are used (at 50- and 10-km horizontal grid spacing) with the comparison performed over the innermost domain. We consider performance indicators reflecting regulations for air quality standards (maximum daily 8-hourly mean ozone, hourly nitrogen dioxide, and daily fine particulate matter concentrations). The WRF-Chem model is found to satisfy the proposed performance objectives regarding ozone and NO2, though it underestimates the latter in urban areas possibly due to uncertainties in emission inventories. Fine particulate matter is well represented by the model, except on days with strong influence from natural sources, highlighting the necessity for fine-tuning dust mobilization and transport in the region. The objectives are fulfilled even though discrepancies exist between model and observations. Our results indicate the need for more stringent performance criteria at relatively low concentrations. Overall, we find that the methodology provides in-depth information and relevant statistical metrics to guide air quality and model assessments for monitoring compliance with the EU Air Quality Directives and other guidelines to limit the impact of air pollution on human health and ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA