Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(1): 373-380, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29160075

RESUMEN

We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured, and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble.

2.
Nanomaterials (Basel) ; 13(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37686910

RESUMEN

Optical alignment and optical orientation of excitons are studied experimentally on an ensemble of core/shell CdSe/CdS colloidal nanoplatelets. Linear and circular polarization of photoluminescence during resonant excitation of excitons is measured at cryogenic temperatures and with magnetic fields applied in the Faraday geometry. The developed theory addresses the optical alignment and optical orientation of excitons in colloidal nanocrystals, taking into account both bright and dark exciton states in the presence of strong electron-hole exchange interaction and the random in-plane orientation of nanoplatelets within the ensemble. Our theoretical analysis of the obtained experimental data allows us to evaluate the exciton fine structure parameters, the g-factors, and the spin lifetimes of the bright and dark excitons. The optical alignment effect enables the identification of the exciton and trion contributions to the emission spectrum, even in the absence of their clear separation in the spectra.

3.
ACS Nano ; 14(7): 9032-9041, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32585089

RESUMEN

Excitons in diluted magnetic semiconductors represent excellent probes for studying the magnetic properties of these materials. Various magneto-optical effects, which depend sensitively on the exchange interaction of the excitons with the localized spins of the magnetic ions can be used for probing. Here, we study core/shell CdSe/(Cd,Mn)S colloidal nanoplatelets hosting diluted magnetic semiconductor layers. The inclusion of the magnetic Mn2+ ions is evidenced by three magneto-optical techniques using high magnetic fields up to 15 T: polarized photoluminescence, optically detected magnetic resonance, and spin-flip Raman scattering. We show that the holes in the excitons play the dominant role in exchange interaction with magnetic ions. We suggest and test an approach for evaluation of the Mn2+ concentration based on the spin-lattice relaxation dynamics of the Mn2+ spin system.

4.
Nanoscale ; 10(2): 646-656, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29239445

RESUMEN

We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various temperatures down to 2 K. We demonstrate that all these methods provide consistent splitting values and discuss their advances and limitations. Colloidal CdSe nanoplatelets with thicknesses of 3, 4 and 5 monolayers are chosen for experimental demonstrations. The bright-dark splitting of excitons varies from 3.2 to 6.0 meV and is inversely proportional to the nanoplatelet thickness. Good agreement between experimental and theoretically calculated size dependence of the bright-dark exciton splitting is achieved. The recombination rates of the bright and dark excitons and the bright to dark relaxation rate are measured by time-resolved techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA