Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Drug Alcohol Depend ; 256: 111058, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244365

RESUMEN

BACKGROUND: Opioid use disorder (OUD), a serious health burden worldwide, is associated with lower cognitive function. Recent studies have demonstrated a negative genetic correlation between OUD and general cognitive ability (COG), indicating a shared genetic basis. However, the specific genetic variants involved, and the underlying molecular mechanisms remain poorly understood. Here, we aimed to quantify and identify the genetic basis underlying OUD and COG. METHODS: We quantified the extent of genetic overlap between OUD and COG using a bivariate causal mixture model (MiXeR) and identified specific genetic loci applying conditional/conjunctional FDR. Finally, we investigated biological function and expression of implicated genes using available resources. RESULTS: We estimated that ~94% of OUD variants (4.8k out of 5.1k variants) also influence COG. We identified three novel OUD risk loci and one locus shared between OUD and COG. Loci identified implicated biological substrates in the basal ganglia. CONCLUSION: We provide new insights into the complex genetic risk architecture of OUD and its genetic relationship with COG.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos Relacionados con Opioides , Humanos , Cognición , Trastornos Relacionados con Opioides/genética
2.
medRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37693403

RESUMEN

Background: Anxiety disorders are prevalent and anxiety symptoms co-occur with many psychiatric disorders. We aimed to identify genomic risk loci associated with anxiety, characterize its genetic architecture, and genetic overlap with psychiatric disorders. Methods: We used the GWAS of anxiety symptoms, schizophrenia, bipolar disorder, major depression, and attention deficit hyperactivity disorder (ADHD). We employed MiXeR and LAVA to characterize the genetic architecture and genetic overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of genomic loci associated with anxiety and those shared with psychiatric disorders. Gene annotation and gene set analyses were conducted using OpenTargets and FUMA, respectively. Results: Anxiety was polygenic with 12.9k estimated genetic risk variants and overlapped extensively with psychiatric disorders (4.1-11.4k variants). MiXeR and LAVA revealed predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 114 novel loci for anxiety by conditioning on the psychiatric disorders. We also identified loci shared between anxiety and major depression (n = 47), bipolar disorder (n = 33), schizophrenia (n = 71), and ADHD (n = 20). Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways and differential tissue expression in more diverse tissues than those annotated to the shared loci. Conclusions: Anxiety is a highly polygenic phenotype with extensive genetic overlap with psychiatric disorders. These genetic overlaps enabled the identification of novel loci for anxiety. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified genetic loci implicate molecular pathways that may lead to potential drug targets.

3.
Neurol Genet ; 10(3): e200143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38817246

RESUMEN

Background and Objectives: Epilepsies are associated with differences in cortical thickness (TH) and surface area (SA). However, the mechanisms underlying these relationships remain elusive. We investigated the extent to which these phenotypes share genetic influences. Methods: We analyzed genome-wide association study data on common epilepsies (n = 69,995) and TH and SA (n = 32,877) using Gaussian mixture modeling MiXeR and conjunctional false discovery rate (conjFDR) analysis to quantify their shared genetic architecture and identify overlapping loci. We biologically interrogated the loci using a variety of resources and validated in independent samples. Results: The epilepsies (2.4 k-2.9 k variants) were more polygenic than both SA (1.8 k variants) and TH (1.3 k variants). Despite absent genome-wide genetic correlations, there was a substantial genetic overlap between SA and genetic generalized epilepsy (GGE) (1.1 k), all epilepsies (1.1 k), and juvenile myoclonic epilepsy (JME) (0.7 k), as well as between TH and GGE (0.8 k), all epilepsies (0.7 k), and JME (0.8 k), estimated with MiXeR. Furthermore, conjFDR analysis identified 15 GGE loci jointly associated with SA and 15 with TH, 3 loci shared between SA and childhood absence epilepsy, and 6 loci overlapping between SA and JME. 23 loci were novel for epilepsies and 11 for cortical morphology. We observed a high degree of sign concordance in the independent samples. Discussion: Our findings show extensive genetic overlap between generalized epilepsies and cortical morphology, indicating a complex genetic relationship with mixed-effect directions. The results suggest that shared genetic influences may contribute to cortical abnormalities in epilepsies.

4.
medRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38464132

RESUMEN

Comorbidities are an increasing global health challenge. Accumulating evidence suggests overlapping genetic architectures underlying comorbid complex human traits and disorders. The bivariate causal mixture model (MiXeR) can quantify the polygenic overlap between complex phenotypes beyond global genetic correlation. Still, the pattern of genetic overlap between three distinct phenotypes, which is important to better characterize multimorbidities, has previously not been possible to quantify. Here, we present and validate the trivariate MiXeR tool, which disentangles the pattern of genetic overlap between three phenotypes using summary statistics from genome-wide association studies (GWAS). Our simulations show that the trivariate MiXeR can reliably reconstruct different patterns of genetic overlap. We further demonstrate how the tool can be used to estimate the proportions of genetic overlap between three phenotypes using real GWAS data, providing examples of complex patterns of genetic overlap between diverse human traits and diseases that could not be deduced from bivariate analyses. This contributes to a better understanding of the etiology of complex phenotypes and the nature of their relationship, which may aid in dissecting comorbidity patterns and their biological underpinnings.

5.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585944

RESUMEN

Objective: Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods: We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results: Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance: Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.

6.
Psychoneuroendocrinology ; 157: 106368, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659117

RESUMEN

C-reactive protein (CRP) tends to be elevated in individuals with psychiatric disorders. Recent findings have suggested a protective effect of the genetic liability to elevated CRP on schizophrenia risk and a causative effect on depression despite weak genetic correlations, while causal relationships with bipolar disorder were inconclusive. We investigated the shared genetic underpinnings of psychiatric disorders and variation in CRP levels. Genome-wide association studies for CRP (n = 575,531), bipolar disorder (n = 413,466), depression (n = 480,359), and schizophrenia (n = 130,644) were used in causal mixture models to compare CRP with psychiatric disorders based on polygenicity, discoverability, and genome-wide genetic overlap. The conjunctional false discovery rate method was used to identify specific shared genetic loci. Shared variants were mapped to putative causal genes, which were tested for overrepresentation among gene ontology gene-sets. CRP was six to ten times less polygenic (n = 1400 vs 8600-14,500 variants) and had a discoverability one to two orders of magnitude higher than psychiatric disorders. Most CRP-associated variants were overlapping with psychiatric disorders. We identified 401 genetic loci jointly associated with CRP and psychiatric disorders with mixed effect directions. Gene-set enrichment analyses identified predominantly CNS-related gene sets for CRP and each of depression and schizophrenia, and basic cellular processes for CRP and bipolar disorder. In conclusion, CRP has a markedly different genetic architecture to psychiatric disorders, but the majority of CRP associated variants are also implicated in psychiatric disorders. Shared genetic loci implicated CNS-related processes to a greater extent than immune processes, which may have implications for how we conceptualise causal relationships between CRP and psychiatric disorders.


Asunto(s)
Trastorno Bipolar , Trastornos Mentales , Esquizofrenia , Humanos , Proteína C-Reactiva/genética , Estudio de Asociación del Genoma Completo , Trastornos Mentales/genética , Esquizofrenia/genética , Trastorno Bipolar/genética , Trastorno Bipolar/psicología , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad/genética
7.
Am J Psychiatry ; 180(11): 815-826, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37752828

RESUMEN

OBJECTIVE: Schizophrenia is associated with increased risk of cardiovascular disease (CVD), although there is variation in risk among individuals. There are indications of shared genetic etiology between schizophrenia and CVD, but the nature of the overlap remains unclear. The aim of this study was to fill this gap in knowledge. METHODS: Overlapping genetic architectures between schizophrenia and CVD risk factors were assessed by analyzing recent genome-wide association study (GWAS) results. The bivariate causal mixture model (MiXeR) was applied to estimate the number of shared variants and the conjunctional false discovery rate (conjFDR) approach was used to pinpoint specific shared loci. RESULTS: Extensive genetic overlap was found between schizophrenia and CVD risk factors, particularly smoking initiation (N=8.6K variants) and body mass index (BMI) (N=8.1K variants). Several specific shared loci were detected between schizophrenia and BMI (N=304), waist-to-hip ratio (N=193), smoking initiation (N=293), systolic (N=294) and diastolic (N=259) blood pressure, type 2 diabetes (N=147), lipids (N=471), and coronary artery disease (N=35). The schizophrenia risk loci shared with smoking initiation had mainly concordant effect directions, and the risk loci shared with BMI had mainly opposite effect directions. The overlapping loci with lipids, blood pressure, waist-to-hip ratio, type 2 diabetes, and coronary artery disease had mixed effect directions. Functional analyses implicated mapped genes that are expressed in brain tissue and immune cells. CONCLUSIONS: These findings indicate a genetic propensity to smoking and a reduced genetic risk of obesity among individuals with schizophrenia. The bidirectional effects of the shared loci with the other CVD risk factors may imply differences in genetic liability to CVD across schizophrenia subgroups, possibly underlying the variation in CVD comorbidity.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Esquizofrenia , Humanos , Enfermedades Cardiovasculares/genética , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo/métodos , Esquizofrenia/genética , Factores de Riesgo , Lípidos , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Sitios Genéticos/genética
8.
medRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37503175

RESUMEN

While neurological and psychiatric disorders have historically been considered to reflect distinct pathogenic entities, recent findings suggest shared pathobiological mechanisms. However, the extent to which these heritable disorders share genetic influences remains unclear. Here, we performed a comprehensive analysis of GWAS data, involving nearly 1 million cases across ten neurological diseases and ten psychiatric disorders, to compare their common genetic risk and biological underpinnings. Using complementary statistical tools, we demonstrate widespread genetic overlap across the disorders, even in the absence of genetic correlations. This indicates that a large set of common variants impact risk of multiple neurological and psychiatric disorders, but with divergent effect sizes. Furthermore, biological interrogation revealed a range of biological processes associated with neurological diseases, while psychiatric disorders consistently implicated neuronal biology. Altogether, the study indicates that neurological and psychiatric disorders share key etiological aspects, which has important implications for disease classification, precision medicine, and clinical practice.

9.
JAMA Psychiatry ; 80(7): 738-742, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163253

RESUMEN

Importance: Premenstrual disorders are heritable, clinically heterogenous, with a range of affective spectrum comorbidities. It is unclear whether genetic predispositions to affective spectrum disorders or other major psychiatric disorders are associated with symptoms of premenstrual disorders. Objective: To assesss whether symptoms of premenstrual disorders are associated with the genetic liability for major psychiatric disorders, as indexed by polygenic risk scores (PRSs). Design, Setting, and Participants: Women from the Norwegian Mother, Father and Child Cohort Study were included in this genetic association study. PRSs were used to determine whether genetic liability for major depression, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, and autism spectrum disorder were associated with the symptoms of premenstrual disorders, using the PRS for height as a somatic comparator. The sample was recruited across Norway between June 1999 and December 2008, and analyses were performed from July 1 to October 14, 2022. Main Outcomes and Measures: The symptoms of premenstrual disorders were assessed at recruitment at week 15 of pregnancy with self-reported severity of depression and irritability before menstruation. Logistic regression was applied to test for the association between the presence of premenstrual disorder symptoms and the PRSs for major psychiatric disorders. Results: The mean (SD) age of 56 725 women included in the study was 29.0 (4.6) years. Premenstrual disorder symptoms were present in 12 316 of 56 725 participants (21.7%). The symptoms of premenstrual disorders were associated with the PRSs for major depression (ß = 0.13; 95% CI, 0.11-0.15; P = 1.21 × 10-36), bipolar disorder (ß = 0.07; 95% CI, 0.05-0.09; P = 1.74 × 10-11), attention deficit/hyperactivity disorder (ß = 0.07; 95% CI, 0.04-0.09; P = 1.58 × 10-9), schizophrenia (ß = 0.11; 95% CI, 0.09-0.13; P = 7.61 × 10-25), and autism spectrum disorder (ß = 0.03; 95% CI, 0.01-0.05; P = .02) but not with the PRS for height. The findings were confirmed in a subsample of women without a history of psychiatric diagnosis. Conclusions: The results of this genetic association study show that genetic liability for both affective spectrum disorder and major psychiatric disorders was associated with symptoms of premenstrual disorders, indicating that premenstrual disorders have overlapping genetic foundations with major psychiatric disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Bipolar , Trastorno Depresivo Mayor , Niño , Humanos , Femenino , Adulto , Estudios de Cohortes , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/genética , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/genética , Factores de Riesgo , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA