Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Anal Chem ; 92(24): 15968-15974, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33269929

RESUMEN

Technological advances in high-resolution mass spectrometry (MS) vastly increased the number of samples that can be processed in a life science experiment, as well as volume and complexity of the generated data. To address the bottleneck of high-throughput data processing, we present SmartPeak (https://github.com/AutoFlowResearch/SmartPeak), an application that encapsulates advanced algorithms to enable fast, accurate, and automated processing of capillary electrophoresis-, gas chromatography-, and liquid chromatography (LC)-MS(/MS) data and high-pressure LC data for targeted and semitargeted metabolomics, lipidomics, and fluxomics experiments. The application allows for an approximate 100-fold reduction in the data processing time compared to manual processing while enhancing quality and reproducibility of the results.


Asunto(s)
Procesamiento Automatizado de Datos/métodos , Metabolómica/métodos , Automatización , Cromatografía Liquida , Electroforesis Capilar , Espectrometría de Masas en Tándem , Factores de Tiempo
3.
Commun Biol ; 6(1): 1073, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865678

RESUMEN

Assembly of reads from metagenomic samples is a hard problem, often resulting in highly fragmented genome assemblies. Metagenomic binning allows us to reconstruct genomes by re-grouping the sequences by their organism of origin, thus representing a crucial processing step when exploring the biological diversity of metagenomic samples. Here we present Adversarial Autoencoders for Metagenomics Binning (AAMB), an ensemble deep learning approach that integrates sequence co-abundances and tetranucleotide frequencies into a common denoised space that enables precise clustering of sequences into microbial genomes. When benchmarked, AAMB presented similar or better results compared with the state-of-the-art reference-free binner VAMB, reconstructing ~7% more near-complete (NC) genomes across simulated and real data. In addition, genomes reconstructed using AAMB had higher completeness and greater taxonomic diversity compared with VAMB. Finally, we implemented a pipeline Integrating VAMB and AAMB that enabled improved binning, recovering 20% and 29% more simulated and real NC genomes, respectively, compared to VAMB, with moderate additional runtime.


Asunto(s)
Genoma Microbiano , Metagenoma , Metagenómica/métodos , Análisis por Conglomerados , Benchmarking
4.
EBioMedicine ; 80: 104032, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35533498

RESUMEN

BACKGROUND: Individuals with long standing diabetes duration can experience damage to small microvascular blood vessels leading to diabetes complications (DCs) and increased mortality. Precision diagnostic tailors a diagnosis to an individual by using biomedical information. Blood small molecule profiling coupled with machine learning (ML) can facilitate the goals of precision diagnostics, including earlier diagnosis and individualized risk scoring. METHODS: Using data in a cohort of 537 adults with type 1 diabetes (T1D) we predicted five-year progression to DCs. Prediction models were computed first with clinical risk factors at baseline and then with clinical risk factors and blood-derived molecular data at baseline. Progression of diabetic kidney disease and diabetic retinopathy were predicted in two complication-specific models. FINDINGS: The model predicts the progression to diabetic kidney disease with accuracy: 0.96 ± 0.25 and 0.96 ± 0.06 area under curve, AUC, with clinical measurements and with small molecule predictors respectively and highlighted main predictors to be albuminuria, glomerular filtration rate, retinopathy status at baseline, sugar derivatives and ketones. For diabetic retinopathy, AUC 0.75 ± 0.14 and 0.79 ± 0.16 with clinical measurements and with small molecule predictors respectively and highlighted key predictors, albuminuria, glomerular filtration rate and retinopathy status at baseline. Individual risk scores were built to visualize results. INTERPRETATION: With further validation ML tools could facilitate the implementation of precision diagnosis in the clinic. It is envisaged that patients could be screened for complications, before these occur, thus preserving healthy life-years for persons with diabetes. FUNDING: This study has been financially supported by Novo Nordisk Foundation grant NNF14OC0013659.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Retinopatía Diabética , Adulto , Albuminuria , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/diagnóstico , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/etiología , Tasa de Filtración Glomerular , Humanos , Factores de Riesgo
5.
ISME Commun ; 2(1): 98, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37938690

RESUMEN

The many microbial communities around us form interactive and dynamic ecosystems called microbiomes. Though concealed from the naked eye, microbiomes govern and influence macroscopic systems including human health, plant resilience, and biogeochemical cycling. Such feats have attracted interest from the scientific community, which has recently turned to machine learning and deep learning methods to interrogate the microbiome and elucidate the relationships between its composition and function. Here, we provide an overview of how the latest microbiome studies harness the inductive prowess of artificial intelligence methods. We start by highlighting that microbiome data - being compositional, sparse, and high-dimensional - necessitates special treatment. We then introduce traditional and novel methods and discuss their strengths and applications. Finally, we discuss the outlook of machine and deep learning pipelines, focusing on bottlenecks and considerations to address them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA