RESUMEN
Observationally, kilonovae are astrophysical transients powered by the radioactive decay of nuclei heavier than iron, thought to be synthesized in the merger of two compact objects1-4. Over the first few days, the kilonova evolution is dominated by a large number of radioactive isotopes contributing to the heating rate2,5. On timescales of weeks to months, its behaviour is predicted to differ depending on the ejecta composition and the merger remnant6-8. Previous work has shown that the kilonova associated with gamma-ray burst 230307A is similar to kilonova AT2017gfo (ref. 9), and mid-infrared spectra revealed an emission line at 2.15 micrometres that was attributed to tellurium. Here we report a multi-wavelength analysis, including publicly available James Webb Space Telescope data9 and our own Hubble Space Telescope data, for the same gamma-ray burst. We model its evolution up to two months after the burst and show that, at these late times, the recession of the photospheric radius and the rapidly decaying bolometric luminosity (Lbol â t-2.7±0.4, where t is time) support the recombination of lanthanide-rich ejecta as they cool.
RESUMEN
Cyclic olefin copolymer (COC) is an amorphous thermoplastic with desirable dielectric and mechanical characteristics for optical applications. In particular, its low refractive index, overall mechanical strength, and absence of strong absorption features make it a promising substrate material for far-infrared applications, which include frequency-selective surfaces, scattering filters, and windows. The dielectric properties of selected COC formulations are surveyed from $ \approx 10 - 700\,\, {{\rm cm}^{ - 1}} $≈10-700cm-1 ($ 1000 - 14\,\, \unicode{x00B5} {\rm m} $1000-14µm), and representative usage as a thin film membrane structure in optical filters is presented.
RESUMEN
Long-duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Because of its enormous energy (Eiso ≈ 1055 erg) and proximity (z ≈ 0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multiwavelength observations covering the first 3 months of its afterglow evolution. The x-ray brightness decays as a power law with slope ≈t-1.66, which is not consistent with standard predictions for jetted emission. We attribute this behavior to a shallow energy profile of the relativistic jet. A similar trend is observed in other energetic GRBs, suggesting that the most extreme explosions may be powered by structured jets launched by a common central engine.