Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Genes Dev ; 29(15): 1649-60, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26215567

RESUMEN

The pre-mRNA splicing reaction of eukaryotic cells has to be carried out extremely accurately, as failure to recognize the splice sites correctly causes serious disease. The small subunit of the U2AF heterodimer is essential for the determination of 3' splice sites in pre-mRNA splicing, and several single-residue mutations of the U2AF small subunit cause severe disorders such as myelodysplastic syndromes. However, the mechanism of RNA recognition is poorly understood. Here we solved the crystal structure of the U2AF small subunit (U2AF23) from fission yeast, consisting of an RNA recognition motif (RRM) domain flanked by two conserved CCCH-type zinc fingers (ZFs). The two ZFs are positioned side by side on the ß sheet of the RRM domain. Further mutational analysis revealed that the ZFs bind cooperatively to the target RNA sequence, but the RRM domain acts simply as a scaffold to organize the ZFs and does not itself contact the RNA directly. This completely novel and unexpected mode of RNA-binding mechanism by the U2AF small subunit sheds light on splicing errors caused by mutations of this highly conserved protein.


Asunto(s)
Modelos Moleculares , Proteínas Nucleares/química , Sitios de Empalme de ARN , Ribonucleoproteínas/química , Schizosaccharomyces/fisiología , Dedos de Zinc/fisiología , Secuencias de Aminoácidos , Sitios de Unión , Análisis Mutacional de ADN , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Schizosaccharomyces/química , Factor de Empalme U2AF
2.
Proc Natl Acad Sci U S A ; 112(17): E2217-24, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870284

RESUMEN

D-Serine is an essential coagonist with glutamate for stimulation of N-methyl-D-aspartate (NMDA) glutamate receptors. Although astrocytic metabolic processes are known to regulate synaptic glutamate levels, mechanisms that control D-serine levels are not well defined. Here we show that d-serine production in astrocytes is modulated by the interaction between the D-serine synthetic enzyme serine racemase (SRR) and a glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). In primary cultured astrocytes, glycolysis activity was negatively correlated with D-serine level. We show that SRR interacts directly with GAPDH, and that activation of glycolysis augments this interaction. Biochemical assays using mutant forms of GAPDH with either reduced activity or reduced affinity to SRR revealed that GAPDH suppresses SRR activity by direct binding to GAPDH and through NADH, a product of GAPDH. NADH allosterically inhibits the activity of SRR by promoting the disassociation of ATP from SRR. Thus, astrocytic production of D-serine is modulated by glycolytic activity via interactions between GAPDH and SRR. We found that SRR is expressed in astrocytes in the subiculum of the human hippocampus, where neurons are known to be particularly vulnerable to loss of energy. Collectively, our findings suggest that astrocytic energy metabolism controls D-serine production, thereby influencing glutamatergic neurotransmission in the hippocampus.


Asunto(s)
Astrocitos/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Glucólisis/fisiología , Hipocampo/metabolismo , Serina/biosíntesis , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Regulación Alostérica/fisiología , Animales , Astrocitos/citología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Hipocampo/citología , Humanos , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , NADP/genética , NADP/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Serina/genética , Transmisión Sináptica/fisiología
3.
Chembiochem ; 16(1): 167-76, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25469677

RESUMEN

We developed fluorescent turn-on probes containing a fluorescent nucleoside, 5-(benzofuran-2-yl)deoxyuridine (dU(BF)) or 5-(3-methylbenzofuran-2-yl)deoxyuridine (dU(MBF)), for the detection of single-stranded DNA or RNA by utilizing DNA triplex formation. Fluorescence measurements revealed that the probe containing dU(MBF) achieved superior fluorescence enhancement than that containing dU(BF). NMR and fluorescence analyses indicated that the fluorescence intensity increased upon triplex formation partly as a consequence of a conformational change at the bond between the 3-methylbenzofuran and uracil rings. In addition, it is suggested that the microenvironment around the 3-methylbenzofuran ring contributed to the fluorescence enhancement. Further, we developed a method for detecting RNA by rolling circular amplification in combination with triplex-induced fluorescence enhancement of the oligonucleotide probe containing dU(MBF).


Asunto(s)
Benzofuranos/química , ADN/química , Desoxiuridina/química , Oligonucleótidos/química , Uracilo/química , Secuencia de Bases , ADN de Cadena Simple/química , Desoxiuridina/análogos & derivados , Colorantes Fluorescentes/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/química , Espectrometría de Fluorescencia
4.
Proteins ; 82(10): 2879-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25066254

RESUMEN

The family of cytoplasmic polyadenylation element binding proteins CPEB1, CPEB2, CPEB3, and CPEB4 binds to the 3'-untranslated region (3'-UTR) of mRNA, and plays significant roles in mRNA metabolism and translation regulation. They have a common domain organization, involving two consecutive RNA recognition motif (RRM) domains followed by a zinc finger domain in the C-terminal region. We solved the solution structure of the first RRM domain (RRM1) of human CPEB3, which revealed that CPEB3 RRM1 exhibits structural features distinct from those of the canonical RRM domain. Our structural data provide important information about the RNA binding ability of CPEB3 RRM1.


Asunto(s)
Modelos Moleculares , Fragmentos de Péptidos/química , Proteínas de Unión al ARN/química , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Bases de Datos de Proteínas , Humanos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Solubilidad
5.
Biomol NMR Assign ; 18(1): 71-78, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551798

RESUMEN

The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B. The IFT protein 54 (IFT54) is an important component of the IFT-B sub-complex. In anterograde movement, IFT54 binds to active kinesin-II, walking along the cilia microtubule axoneme and carrying the dynein-2 complex in an inactive state, which works for retrograde movement. Several mutations in IFT54 are known to cause Senior-Loken syndrome, a ciliopathy. IFT54 possesses a divergent Calponin Homology (CH) domain termed as NN-CH domain at its N-terminus. However, several aspects of the function of the NN-CH domain of IFT54 are still obscure. Here, we report the 1H, 15N, and 13C resonance assignments of the NN-CH domain of human IFT54 and its solution structure. The NN-CH domain of human IFT54 adopts essentially the α1-α2-α3-α4-α5 topology as that of mouse IFT54, whose structure was determined by X-ray crystallographic study. The structural information and assignments obtained in this study shed light on the molecular function of the NN-CH domain in IFT54.


Asunto(s)
Proteínas de Microfilamentos , Dominios Proteicos , Humanos , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calponinas , Proteínas de Microfilamentos/química , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Soluciones
6.
Nucleic Acids Res ; 39(4): 1538-53, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20926394

RESUMEN

Human Transformer2-ß (hTra2-ß) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-ß specifically binds to two types of RNA sequences [the CAA and (GAA)(2) sequences]. We determined the solution structure of the hTra2-ß RRM (spanning residues Asn110-Thr201), which not only has a canonical RRM fold, but also an unusual alignment of the aromatic amino acids on the ß-sheet surface. We then solved the complex structure of the hTra2-ß RRM with the (GAA)(2) sequence, and found that the AGAA tetra-nucleotide was specifically recognized through hydrogen-bond formation with several amino acids on the N- and C-terminal extensions, as well as stacking interactions mediated by the unusually aligned aromatic rings on the ß-sheet surface. Further NMR experiments revealed that the hTra2-ß RRM recognizes the CAA sequence when it is integrated in the stem-loop structure. This study indicates that the hTra2-ß RRM recognizes two types of RNA sequences in different RNA binding modes.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas de Unión al ARN/química , ARN/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Guanina/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Factores de Empalme Serina-Arginina
7.
J Biochem ; 174(2): 203-216, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37094335

RESUMEN

The pre-spliceosomal complex involves interactions between U1 and U2 snRNPs, where a ubiquitin-like domain (ULD) of SF3A1, a component of U2 snRNP, binds to the stem-loop 4 (SL4; the UUCG tetraloop) of U1 snRNA in U1 snRNP. Here, we reported the 1.80 Å crystal structure of human SF3A1 ULD (ULDSF3A1) complexed with SL4. The structural part of ULDSF3A1 (res. 704-785) adopts a typical ß-grasp fold with a topology of ß1-ß2-α1-310a-ß3-ß4-310b-ß5, closely resembling that of ubiquitin, except for the length and structure of the ß1/ß2 loop. A patch on the surface formed by three ULDSF3A1-specific residues, Lys756 (ß3), Phe763 (ß4) and Lys765 (following ß4), contacts the canonical UUCG tetraloop structure. In contrast, the directly following C-terminal tail composed of 786KERGGRKK793 was essentially stretched. The main or side chains of all the residues interacted with the major groove of the stem helix; the RGG residues adopted a peculiar conformation for RNA recognition. These findings were confirmed by mutational studies using bio-layer interferometry. Collectively, a unique combination of the ß-grasp fold and the C-terminal tail constituting ULDSF3A1 is required for the SL4-specific binding. This interaction mode also suggests that putative post-translational modifications, including ubiquitination in ULDSF3A1, directly inhibit SL4 binding.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U2 , Ubiquitina , Humanos , Ribonucleoproteína Nuclear Pequeña U2/genética , Ubiquitina/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN , Factores de Empalme de ARN
8.
Protein Sci ; 31(10): e4437, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173164

RESUMEN

SURP domains are exclusively found in splicing-related proteins in all eukaryotes. SF3A1, a component of the U2 snRNP, has two tandem SURP domains, SURP1, and SURP2. SURP2 is permanently associated with a specific short region of SF3A3 within the SF3A protein complex whereas, SURP1 binds to the splicing factor SF1 for recruitment of U2 snRNP to the early spliceosomal complex, from which SF1 is dissociated during complex conversion. Here, we determined the solution structure of the complex of SURP1 and the human SF1 fragment using nuclear magnetic resonance (NMR) methods. SURP1 adopts the canonical topology of α1-α2-310 -α3, in which α1 and α2 are connected by a single glycine residue in a particular backbone conformation, allowing the two α-helices to be fixed at an acute angle. A hydrophobic patch, which is part of the characteristic surface formed by α1 and α2, specifically contacts a hydrophobic cluster on a 16-residue α-helix of the SF1 fragment. Furthermore, whereas only hydrophobic interactions occurred between SURP2 and the SF3A3 fragment, several salt bridges and hydrogen bonds were found between the residues of SURP1 and the SF1 fragment. This finding was confirmed through mutational studies using bio-layer interferometry. The study also revealed that the dissociation constant between SURP1 and the SF1 fragment peptide was approximately 20 µM, indicating a weak or transient interaction. Collectively, these results indicate that the interplay between U2 snRNP and SF1 involves a transient interaction of SURP1, and this transient interaction appears to be common to most SURP domains, except for SURP2.


Asunto(s)
Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U2 , Empalmosomas , Glicina , Humanos , Unión Proteica , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
9.
Biomol NMR Assign ; 16(2): 297-303, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35666428

RESUMEN

Ribosome biogenesis is a complicated, multistage process coordinated by ribosome assembly factors. Ribosome binding factor A (RbfA) is a bacterial one, which possesses a single structural type-II KH domain. By this domain, RbfA binds to a 16S rRNA precursor in small ribosomal subunits to promote its 5'-end processing. The human RbfA homolog, mtRbfA, binds to 12S rRNAs in the mitoribosomal small subunits and promotes its critical maturation process, the dimethylation of two highly conserved consecutive adenines, which differs from that of RbfA. However, the structural basis of the mtRbfA-mediated maturation process is poorly understood. Herein, we report the 1H, 15N, and 13C resonance assignments of the KH domain of mtRbfA and its solution structure. The mtRbfA domain adopts essentially the same α1-ß1-ß2-α2(kinked)-ß3 topology as the type-II KH domain. Comparison with the RbfA counterpart showed structural differences in specific regions that function as a putative RNA-binding site. Particularly, the α2 helix of mtRbfA forms a single helix with a moderate kink at the Ser-Ala-Ala sequence, whereas the corresponding α2 helix of RbfA is interrupted by a distinct kink at the Ala-x-Gly sequence, characteristic of bacterial RbfA proteins, to adopt an α2-kink-α3 conformation. Additionally, the region linking α1 and ß1 differs considerably in the sequence and structure between RbfA and mtRbfA. These findings suggest some variations of the RNA-binding mode between them and provide a structural basis for mtRbfA function in mitoribosome biogenesis.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Mitocondriales/química , Ribosomas Mitocondriales , Proteínas de Unión al ARN/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Humanos , Ribosomas Mitocondriales/metabolismo , Resonancia Magnética Nuclear Biomolecular , Precursores del ARN/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Vitamina B 12/análogos & derivados
10.
Biomol NMR Assign ; 16(1): 41-49, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34783967

RESUMEN

Matrin-3 is a multifunctional protein that binds to both DNA and RNA. Its DNA-binding activity is linked to the formation of the nuclear matrix and transcriptional regulation, while its RNA-binding activity is linked to mRNA metabolism including splicing, transport, stabilization, and degradation. Correspondingly, Matrin-3 has two zinc finger domains for DNA binding and two consecutive RNA recognition motif (RRM) domains for RNA binding. Matrin-3 has been reported to cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) when its disordered region contains pathogenic mutations. Simultaneously, it has been shown that the RNA-binding activity of Matrin-3 mediated by its RRM domains, affects the formation of insoluble cytoplasmic granules, which are related to the pathogenic mechanism of ALS/FTD. Thus, the effect of the RRM domains on the phase separation of condensed protein/RNA mixtures has to be clarified for a comprehensive understanding of ALS/FTD. Here, we report the 1H, 15N, and 13C resonance assignments of the two RNA binding domains and their solution structures. The resonance assignments and the solution structures obtained in this work will contribute to the elucidation of the molecular basis of Matrin-3 in the pathogenic mechanism of ALS and/or FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Resonancia Magnética Nuclear Biomolecular , ARN/metabolismo , Motivo de Reconocimiento de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA