Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Opt Express ; 31(3): 4667-4674, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785428

RESUMEN

Analytical expressions for the spatial spectrum of fluence fluctuations of a laser pulse propagating in a medium with Kerr nonlinearity have been obtained. It is shown that inhomogeneities with a spatial scale much larger than the critical scale of self-focusing grow insignificantly even at large values of the B-integral. Experiments using BK7 glass and a KDP crystal as a nonlinear medium confirm the obtained theoretical results. This may be interesting for pulse post-compression, frequency doubling, and other experiments using transmission optical elements in ultra-high intensity lasers.

2.
Inorg Chem ; 62(43): 17736-17744, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37850881

RESUMEN

The reaction between an excess of Fe(CO)5 with {Cryptand(K+)}(C60•-) produced the salt {Cryptand(K+)}2{[Fe(CO)2]2-µ2-η2:η2-η2:η2-(C60)2}2-·4C6H4Cl2 (1) containing negatively charged iron-bridged fullerene dimers. In these dimers, the C60 cages are linked via two Fe(CO)2 fragments, forming short Fe-C(C60) bonds with a length of 2.070(3) Å and via two intercage C-C bonds with a length of 1.566(3) Å. Interfullerene center-to-center distance is short, being 9.02 Å. Thus, the coordination-induced dimerization of fullerenes is observed in 1. The dimer is negatively charged, with additional negative electron density mainly localized on iron atoms and, to a lesser extent, on the C60 cages, as revealed by optical and electron paramagnetic resonance spectra. These dimers have a diamagnetic singlet ground state with a small singlet-triplet gap of 25 K; consequently, they transfer to a paramagnetic state with two S = 1/2 spins per dimer above 50 K. Previously, different dimers with isomeric structures were obtained starting from {Cryptand(K+)}(C60•-) and Fe3(CO)12. However, these dimers exhibit diamagnetic properties, owing to the formation of a Fe-Fe bond. In contrast, in dimer 1, the Fe atoms are positioned too far apart to form such a bond, preserving the spin on Fe. We assume that both dimers are formed through the same [Fe(CO)3](C60•-) intermediate, but the subsequent interaction of this intermediate with Fe3(CO)12 or its dimerization yields different dimers. Therefore, the starting carbonyls can control the structures and properties of the resulting dimers.

3.
Opt Express ; 30(22): 40584-40591, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298988

RESUMEN

The use of the post-compression technique ensures gain in laser pulse peak power but at the same time degrades beam focusability due to the nonlinear wavefront distortions caused by a spatially nonuniform beam profile. In this paper a substantial focusability improvement of a post-compressed laser pulse by means of adaptive optics was demonstrated experimentally. The Strehl ratio increase from 0.16 to 0.43 was measured. Simulations showed that the peak intensity in this case reaches 0.52 of the theoretical limit.

4.
Inorg Chem ; 61(49): 20144-20149, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450012

RESUMEN

The interaction of {Cryptand(K+)}(C60•-) with Fe3(CO)12 produced {Cryptand(K+)}2{Fe(CO)2-µ2-η2,η2-C60}22-·2.5C6H4Cl2 (1) as the first negatively charged iron-bridged fullerene C60 dimer. The bridged iron atoms are coordinated to two 6-6 bonds of one C60 hexagon with short and long C(C60)-Fe bonds with average lengths of 2.042(3) and 2.088(3) Å. Fullerenes are close to each other in the dimer with a center-to-center interfullerene distance of 10.02 Å. Optical spectra support the localization of negative electron density on the Fe2(CO)4 units, which causes a 50 cm-1 shift of the C≡O vibration bands to smaller wavenumbers, and the C60 cages. Dimers are diamagnetic and electron paramagnetic resonance silent and have a singlet ground state resulting from the formation of an Fe-Fe bond in the dimer with a length of 2.978(4) Å. According to density functional theory calculations, the excited triplet state is higher than the ground state by 6.5 kcal/mol. Compound 1 shows a broad near-infrared band with a maximum at 970 nm, which is attributable to the charge transfer from the orbitals localized mainly on iron atoms to the C60 ligand.


Asunto(s)
Fulerenos , Fulerenos/química , Hierro , Ligandos , Vibración , Espectroscopía de Resonancia por Spin del Electrón , Polímeros
5.
J Appl Microbiol ; 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36626770

RESUMEN

AIMS: The aim of this study was to develop a rapid PCR-based method for spoligotyping of mycobacteria in the microarray format and to compare it to conventional spoligotyping by hybridization. METHODS AND RESULTS: The method employs the On-Chip PCR technique with primers specific for 43 spacers that separate direct repeats (DRs) in the DR region of mycobacterial DNA. The primers were immobilized on gel-based microarrays, and PCR was performed directly on the chips. The PCR fluorescence images were acquired and processed using a portable fluorescence analyzer equipped with dedicated software. Analysis takes 1.5-2 hours and can be carried out on clinical samples without additional handling. The analytical sensitivity of the method was 103 copies of target DNA. The spoligotyping results of 51 samples produced by the proposed method and by conventional reverse hybridization approach were in full concordance. CONCLUSIONS: High throughput capacity, computerized data analysis, compact equipment, and reliable results make the On-Chip PCR an attractive alternative to intra- and interspecific spoligotyping of Mycobacterium tuberculosis complex bacteria.

6.
J Appl Microbiol ; 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36626798

RESUMEN

AIMS: The aim of this study was to develop a rapid PCR-based method for spoligotyping of Mycobacteria in the microarray format and to compare it to conventional spoligotyping by hybridization. METHODS AND RESULTS: The method employs the on-Chip PCR technique with primers specific for 43 spacers that separate direct repeats (DRs) in the DR region of mycobacterial DNA. The primers were immobilized on gel-based microarrays, and PCR was performed directly on the chips. The PCR fluorescence images were acquired and processed using a portable fluorescence analyzer equipped with dedicated software. Analysis takes 1.5-2 hours and can be carried out on clinical samples without additional handling. The analytical sensitivity of the method was 103 copies of target DNA. The spoligotyping results of 51 samples produced by the proposed method and by conventional reverse hybridization approach were in full concordance. CONCLUSIONS: High throughput capacity, computerized data analysis, compact equipment, and reliable results make the on-Chip PCR an attractive alternative to intra- and interspecific spoligotyping of Mycobacterium tuberculosis complex bacteria. SIGNIFICANCE AND IMPACT OF STUDY: Fast microarray-based spoligotyping technique using on-Chip PCR was developed.

7.
Opt Express ; 29(18): 28297-28306, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34614964

RESUMEN

The PEARL laser output pulse with a duration of 60-70 fs was compressed to 11 fs after passing through a 5-mm thick silica plate and reflecting from two chirping mirrors with a total dispersion of -250 fs2. The experiments were carried out for the B-integral values up to 19 without damage of the optical elements, which indicates that small-scale self-focusing was suppressed. The results obtained show the possibility of further nonlinear compression scaling to multipetawatt power in pulses with duration commensurate with the field period.

8.
Chemistry ; 26(72): 17470-17480, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-32852068

RESUMEN

Crystalline {Cryptand[2.2.2](Na+ )}{HAT(CN)6 .- }⋅0.5C6 H4 Cl2 (1), {Cryptand[2.2.2](K+ )}{HAT(CN)6 .- } (2), (CV+ ){HAT(CN)6 .- } (3), and (CV+ ){HAT(CN)6 .- }⋅2C6 H4 Cl2 (4) salts (where CV+ is the crystal violet cation) containing hexaazatriphenylenehexacarbonitrile radical anions have been obtained. The solid-state molecular structure as well as the optical and magnetic properties of HAT(CN)6 .- are studied. The formation of HAT(CN)6 .- in 1-4 leads to the appearance of new bands in the visible range, at 694 and 740 nm. The HAT(CN)6 .- radical anions have spin state S=1/2 and are packed in one-dimensional stacks containing the {HAT(CN)6 .- }2 dimers alternated with weaker interacting pairs of HAT(CN)6 .- in 1 and nearly isolated {HAT(CN)6 .- }2 dimers in 2. The {HAT(CN)6 .- }2 dimers are diamagnetic in 1 but they effectively mediate one-dimensional antiferromagnetic coupling of spins within the stacks with moderate exchange interaction of J/kB = -80 K. The behaviour of salt 2 is described by a singlet-triplet model for the {HAT(CN)6 .- }2 dimers with an energy gap of 434(±7) K. Magnetic behaviour of both salts agree well with the data of extended Hückel calculations. Salts 3 and 4 contain isolated stacks of alternated HAT(CN)6 .- and CV+ ions, and in this case, nearly paramagnetic behaviour is observed with Weiss temperatures of -1 and -7 K, respectively. Narrow Lorentzian EPR signals with g = 2.0033-2.0039 were found for the HAT(CN)6 .- radical anions in 1 and 4 but in solution g-factor shifts to 1.9964. The electronic structure of HAT(CN)6 .- is analysed based on X-ray diffraction data for 2, showing a Jahn-Teller distortion of the radical anion that reduces the symmetry from D3h to Cs and splits the initially degenerated LUMOs.

9.
Inorg Chem ; 59(2): 1169-1175, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31917555

RESUMEN

Reduction of {ZnII(TPyP)} to the {ZnII(TPyP)}2- dianions (TPyP: tetra(4-pyridyl)porphyrin) in the presence of Bu3MeP+ allows one to observe the C-H bond cleavage in the methyl group of Bu3MeP+ to form (Bu3MeP+){ZnII(CH2PBu3)(TPyPH)}-·0.337C6H5CH3 (1). Salt 1 is the first coordination complex of neutral CH2PBu3 ylide and metalloporphyrin. The released hydrogen atom attacks the meso-carbon atom of TPyP4- forming a TPyPH3- macrocycle related to phlorins. Decreased symmetry of the TPyPH3- allows the observation of a strong NIR absorption. We discuss the molecular structure, optical, and magnetic properties of 1 together with its formation pathways.

10.
Phys Chem Chem Phys ; 21(4): 1645-1649, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30624457

RESUMEN

Salts of fullerene C60˙- and endometallofullerene Sc3N@Ih-C80˙- radical anions with Bu3MeP+ cations ((Bu3MeP+)3(C60˙-)3·C6H4Cl2 (1) and (Bu3MeP+)3(Sc3N@Ih-C80˙-)3·C6H4Cl2 (2)) have been obtained. The C3 symmetry of the Bu3MeP+ cation provides 2D Kagome lattices with an equilateral triangle arrangement of fullerenes in accordance with trigonal crystal symmetry P31m. The C60˙- and Sc3N@Ih-C80˙- radical anions preserve their monomeric forms in 1 and 2 with the S = 1/2 spin state down to 1.9 K. The close packing of the fullerene radical anions results in strong antiferromagnetic coupling of the spins with Weiss temperatures of -108 K for 1 and -43 K for 2. Compound 1 is a rare example of a magnetic system in which in spite of the strong magnetic coupling of spins no long-range ordering is observed down to 1.9 K. The 13C NMR spectra of the 13C enriched sample of 1 support the absence of the antiferromagnetic ordering of spins down to 1.5 K. Thus, the crystals of 1 preserve large spin frustration forced by the trigonal symmetry. Therefore, compound 1 is a promising candidate for the first observation of a quantum spin liquid (QSL) state in a fullerene-based system. Isostructural salt 2 is the first compound that contains monomeric paramagnetic Sc3N@Ih-C80˙- radical anions stable down to 1.9 K, which show strong spin frustration. These data indicate the ability of endometallofullerenes to give exotic magnetic systems such as QSLs.

11.
Chemistry ; 24(33): 8415-8423, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29656402

RESUMEN

Reduction methods for the preparation of coordination complexes of titanium(IV) and indium(III) phthalocyanines (Pc) with organic dyes such as indigo, thioindigo, and squarylium dye III (SQ) have been developed, which allow one to obtain crystalline {cryptand(K+ )}{(cis-indigo-O,O)2- TiIV (Pc2- )}(Cl- )⋅C6 H4 Cl2 (1), {cryptand(K+ )}{(cis-thioindigo-O,O)2- InIII (Pc2- )}- ⋅C6 H4 Cl2 (2), and {cryptand(K+ )}{[(SQ)2 -O,O]2- InIII (Pc2- )}- ⋅3.5 C6 H4 Cl2 (3) complexes. The formation of these complexes is accompanied by the reduction of the starting dyes to the anionic state. Transition of trans-indigo or trans-thioindigo to the cis conformation in 1 and 2 provides coordination of both carbonyl oxygen atoms of the dye to TiIV Pc or InIII Pc. SQ is reduced to the radical anion state and forms unusual diamagnetic singly bonded (SQ- )2 dimers in 3. These dimers have two closely positioned carbonyl oxygen atoms coordinated to InIII Pc. Dianionic Pc2- macrocycles have been found in 1-3. The complexes contain two chromophore molecules at one metal center. However, their optical spectra are defined mainly by absorption bands of the metal phthalocyanines.

12.
Inorg Chem ; 56(4): 1804-1813, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28165230

RESUMEN

Crystalline anionic salts with copper octafluoro- and hexadecafluorophthalocyanines, (Bu4N+)2[CuII(F8Pc)4-]2-·2C6H4Cl2 (1) and (PPN+)3[CuF16Pc]33-·2C6H5CN (2), where PPN+ is bis(triphenylphosphoranylidene)ammonium and Pc is phthalocyanine, have been obtained. The absence of noticeable absorption in the NIR range and DFT calculations for 1 indicate that both negative charges are mainly localized on the Pc ligand, and that the [CuII(F8Pc)4-]2- dianions are formed without reduction of CuII. The magnetic moment of 1.60 µB corresponds to the contribution of one S = 1/2 spin per dianion. The spin is localized on the CuII atom, which shows an EPR signal characteristic of CuII. Dianions are isolated in 1, providing only weak magnetic coupling of spins with a Weiss temperature of -4 K. Salt 2 contains closely packed π-π stacks built of [CuF16Pc]- anions of types I and II, and the interplanar distances are 3.187 and 3.275 Å. According to the DFT calculations, the [CuF16Pc]- anions of types I and II can have different charge distributions, with localization of an extra electron on the copper atoms to form diamagnetic [CuI(F16Pc)2-]- monoanions or delocalization of an extra electron on the F16Pc ligand to form [CuII(F16Pc)•3-]•- having an S = 1/2 (CuII) + 1/2 (F16Pc•3-) spin state. In fact, at 300 K, the magnetic moment of 2 of 3.25 µB per formula unit is rather close to the contribution from two [CuII(F16Pc)•3-]•- (calculated µeff is 3.46 µB). The Weiss temperature of -21.5 K indicates antiferromagnetic coupling of spins, which can be modeled by stronger intermolecular coupling between (F16Pc)•3- with J1/kB = -23.5 K and weaker intramolecular coupling between CuII and (F16Pc)•3- with J2/kB = -8.1 K. This interaction is realized in the {[CuII(F16Pc)•3-]•-}2 dimers separated by diamagnetic [CuI(F16Pc)2-]- species. In spite of the stacking arrangement of phthalocyanine macrocycles in 2, the inhomogeneous charge distribution and nonuniform distances between the macrocycles should suppress electrical conductivity.

13.
Inorg Chem ; 55(4): 1390-402, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26836829

RESUMEN

The ability of tin atoms to form stable Sn-M bonds with transition metals was used to prepare transition metal complexes with tin(II) phthalocyanine in neutral, monoanionic, and dianionic states. These complexes were obtained via the interactions of [Sn(IV)Cl2Pc(3-)](•-) or [Sn(II)Pc(3-)](•-) radical anions with {Cp*Mo(CO)2}2, {CpFe(CO)2}2, {CpMo(CO)3}2, Fe3(CO)12, {Cp*RhCl2}2, or Ph5CpRu(CO)2Cl. The neutral coordination complexes of Cp*MoBr(CO)2[Sn(II)Pc(2-)]·0.5C6H4Cl2 (1) and CpFe(CO)2[Sn(II)Pc(2-)]·2C6H4Cl2 (2) were obtained from [Sn(IV)Cl2Pc(3-)](•-). On the other hand, the coordination of transition metals to [Sn(II)Pc(3-)](•-) yielded anionic coordination complexes preserving the spin on [Sn(II)Pc(3-)](•-). However, in the case of {cryptand[2,2,2](Na(+))}{CpFe(II)(CO)2[Sn(II)Pc(4-)]}(-)·C6H4Cl2 (4), charge transfer from CpFe(I)(CO)2 to [Sn(II)Pc(3-)](•-) took place to form the diamagnetic [Sn(II)Pc(4-)](2-) dianion and {CpFe(II)(CO)2}(+). The complexes {cryptand[2,2,2](Na(+))}{Fe(CO)4[Sn(II)Pc(3-)](•-)} (5), {cryptand[2,2,2](Na(+))}{CpMo(CO)2[Sn(II)Pc(2-)Sn(II)Pc(3-)(•-)]} (6), and {cryptand[2,2,2](Na(+))}{Cp*RhCl2[Sn(II)Pc(3-)](•-)} (7) have magnetic moments of 1.75, 2.41, and 1.75 µ(B), respectively, owing to the presence of S = 1/2 spins on [Sn(II)Pc(3-)](•-) and CpMo(I)(CO)2 (for 6). In addition, the strong antiferromagnetic coupling of spins with Weiss temperatures of -35.5 -28.6 K was realized between the CpMo(I)(CO)2 and the [Sn(II)Pc(3-)](•-) units in 6 and the π-stacking {Fe(CO)4[Sn(II)Pc(3-)](•-)}2 dimers of 5, respectively. The [Sn(II)Pc(3-)](•-) radical anions substituted the chloride anions in Ph5CpRu(CO)2Cl to form the formally neutral compound {Ph5CpRu(II)(CO)2[Sn(II)Pc(3-)]} (8) in which the negative charge and spin are preserved on [Sn(II)Pc(3-)](•-). The strong antiferromagnetic coupling of spins with a magnetic exchange interaction J/k(B) = -183 K in 8 is explained by the close packing of [Sn(II)Pc(3-)](•-) in the π-stacked {Ph5CpRu(II)(CO)2[Sn(II)Pc(3-)](•-)}2 dimers.

14.
Chemistry ; 21(3): 1014-28, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25388432

RESUMEN

Radical anion salts of metal-containing and metal-free phthalocyanines [MPc(3-)](·-), where M = Cu(II), Ni(II), H2, Sn(II), Pb(II), Ti(IV)O, and V(IV)O (1-10) with tetraalkylammonium cations have been obtained as single crystals by phthalocyanine reduction with sodium fluorenone ketyl. Their formation is accompanied by the Pc ligand reduction and affects the molecular structure of metal phthalocyanine radical anions as well as their optical and magnetic properties. Radical anions are characterized by the alternation of short and long C-Nimine bonds in the Pc ligand owing to the disruption of its aromaticity. Salts 1-10 show new bands at 833-1041 nm in the NIR range, whereas the Q- and Soret bands are blue-shifted by 0.13-0.25 eV (38-92 nm) and 0.04-0.07 eV (4-13 nm), respectively. Radical anions with Ni(II), Sn(II), Pb(II), and Ti(IV)O have S = 1/2 spin state, whereas [Cu(II)Pc(3-)](·-) and [V(IV)OPc(3-)](·-) containing paramagnetic Cu(II) and V(IV)O have two S = 1/2 spins per radical anion. Central metal atoms strongly affect EPR spectra of phthalocyanine radical anions. Instead of narrow EPR signals characteristic of metal-free phthalocyanine radical anions [H2Pc(3-)](·-) (linewidth of 0.08-0.24 mT), broad EPR signals are manifested (linewidth of 2-70 mT) with g-factors and linewidths that are strongly temperature-dependent. Salt 11 containing the [Na(I)Pc(2-)](-) anions as well as previously studied [Fe(I)Pc(2-)](-) and [Co(I)Pc(2-)](-) anions that are formed without reduction of the Pc ligand do not show changes in molecular structure or optical and magnetic properties characteristic of [MPc(3-)](·-) in 1-10.

15.
Phys Chem Chem Phys ; 15(23): 9136-44, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23649228

RESUMEN

New fullerene salts (TMP(+))2·(C60(2-))·(C6H4Cl2)2 (1), {DB-18-crown-6·[Na(+)]·(C6H5CN)2}2·(C60(2-))·C6H5CN·C6H4Cl2 (2), {cryptand[2,2,2]·(Na(+))}2·(C60(2-)) (3) and (PPN(+))2·(C60(2-))·(C6H4Cl2)2 (4) were obtained as single crystals. Their crystal structures were solved and their optical and magnetic properties were analyzed. The spectra of the salts in the IR and UV-visible-NIR ranges indicate the formation of C60(2-) dianions in 1-4. These salts show similar behavior in EPR measurements, explained by the diamagnetic ground state of the C60(2-) dianions and the thermal population of the excited triplet state, which is separated by an energy gap of 487-540 cm(-1). The magnetic susceptibility of 4 also increased above 130 K due to the population of the excited triplet state. The observed splitting of the C60 LUMO is attributed to the Jahn-Teller (JT) effect. We analyzed the splitting by an extended Hückel method using the single-crystal structural data for the compounds containing neutral, mono- and dianions of C60. The splitting of the initially triply degenerated C60 LUMO produces three molecular orbitals. The gap between the lowest and highest orbitals is very small in neutral C60 (128-140 cm(-1)), it increases in C60(˙-) (500-710 cm(-1)) and increases further in C60(2-) (1080-1670 cm(-1)). It was found that the splitting of the C60 LUMO is realized in different ways for the mono- and dianions. The ground and first excited state are separated in C60(˙-) by a small gap of 55-180 cm(-1) only. This gap is noticeably larger in the C60(2-) dianions and falls into the 760-1390 cm(-1) range.

16.
Dalton Trans ; 52(34): 12049-12056, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37581295

RESUMEN

Heterobimetallic {[Co(CO)4]-[InIII(Pc2-)]} (1) and (Cp*2Cr+){[Mn(CO)5]-[InIII(Pc˙3-)]}·2C6H4Cl2 (2) complexes based on indium(III) phthalocyanine (Pc) were obtained as crystals. The complexes were synthesized by single (1) and double (2) reduction of indium(III) phthalocyanine chloride in the presence of transition metal carbonyls. Complex 1 contains dianionic Pc2- macrocycles. Thus, the coordinated Co(CO)4 carbonyl accepts an electron in the one-electron reduction forming a diamagnetic [Co(CO)4]- anion. Complex 2 contains a heterobimetallic {[Mn(CO)5]-[InIII(Pc˙3-)]}- anion and paramagnetic Cp*2Cr+ counter cations. Therefore, in the double reduction, electrons are transferred to Mn(CO)5 forming a diamagnetic [Mn(CO)5]- anion and to the Pc2- macrocycle forming a paramagnetic radical Pc˙3- trianion. Such assignments for 1 and 2 are in line with optical spectra, crystal structures and the data of magnetic measurements. The spectrum of 1 in the UV-visible range is similar to that of the starting InIIIClPc. The formation of 2 is accompanied by an essential blue-shift of the Q-band of Pc as well as by the appearance of an intense NIR band at 1005 nm characteristic of Pc˙3-. Compound 1 is EPR silent and diamagnetic, whereas the value of the effective magnetic moment of 2 is 4.24µB at 300 K, which corresponds to the contribution of S = 1/2 (Pc˙3-) and S = 3/2 (Cp*2Cr+) spins. Both weakly coupled paramagnetic centers (J = -0.41 cm-1) are observed in the EPR spectra.

17.
Dalton Trans ; 51(44): 16921-16925, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36305206

RESUMEN

A new promising method for the preparation of crystalline 2D polymers based on tetra(4-pyridyl)porphyrin has been developed. Radical anion {H2T(4-Py)P˙-} species are used as the starting material. A new solid-state supramolecular array [{H2T(4-Py)P}·{TbIII(TMHD)3}2]·2.84C6H14 (1) in which porphyrin units are bridged with TbIII ions to form a self-assembled 2D polymer has been obtained. The complex contains neutral porphyrin macrocycles, which is supported by optical and magnetic data. High-spin paramagnetic TbIII ions are weakly antiferromagnetically coupled in accordance with rather long distances between them.

18.
Dalton Trans ; 51(25): 9770-9779, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35704389

RESUMEN

The reaction of MnIIPc, FeIIPc or FeIIPcCl16 with KCN in the presence of cryptand[2.2.2] yielded dicyano-complexes {cryptand(K+)}2{MII(CN)2(macrocycle2-)}2-·XC6H4Cl2 (M = Mn and Fe, X = 1 and 2) that were used for the preparation of trinuclear assemblies of the general formula {cryptand(K+)}2{MII(CN)2Pc·(ML)2}2-·nC6H4Cl2 (MII = MnII and FeII; n = 1, 4 and 5). These assemblies were formed via coordination of two manganese(II) acetylacetonate (ML = MnII(acac)2, S = 5/2), tris(cyclopentadienyl)gadolinium (ML = Cp3GdIII, S = 7/2) or tris(cyclopentadienyl)neodymium (ML = Cp3NdIII, S = 3/2) units to the nitrogen atoms of bidentate cyano ligands. The N(CN)-Mn{MnII(acac)2} bond is 2.129(3) Å long but the bonds are elongated to 2.43-2.49 Å for tris(cyclopentadienyl)lanthanides. {Cryptand(K+)}2{MnII(CN)2Pc·(MnII(acac)2)2}2-·5C6H4Cl2 (2) contains three Mn(II) ions in different spin states (S = 5/2 and 1/2). Strong antiferromagnetic coupling of spins observed between them with the exchange interaction (J) of -17.6 cm-1 enables the formation of a high S = 9/2 spin state for {MnII(CN)2Pc·(MnII(acac)2)2}2- dianions at 2 K. The estimated exchange interaction between MnII (S = 1/2) and GdIII (S = 7/2) spins in {MnII(CN)2Pc·(Cp3GdIII)2}2- is only -1.1 cm-1, and in contrast to 2, nearly independent GdIII and MnII centers are formed. As a result, no transition to the high-spin state is observed in {MnII(CN)2Pc·(Cp3GdIII)2}2-. The {MnII(CN)2Pc·(Cp3NdIII)2}2- and{FeII(CN)2Pc·(Cp3NdIII)2}2- dianions with Cp3NdIII show a decrease of χMT values in the whole studied temperature range (300-1.9 K). A similar behaviour was found previously for pristine Cp3NdIII and Cp3NdIII·L complexes (L = alkylisocyanide ligand).

19.
Dalton Trans ; 51(6): 2226-2237, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35044409

RESUMEN

Coordination of tin(II) phthalocyanine to transition metal carbonyl clusters in neutral {SnII(Pc2-)}0 or radical anion {SnII(Pc˙3-)}- states is reported. Direct interaction of Co4(CO)12 with {SnII(Pc2-)}0 yields a crystalline complex {Co4(CO)11·SnII(Pc2-)} (1). There is no charge transfer from the cluster to phthalocyanine in 1, which preserves the diamagnetic Pc2- macrocycle. The Ru3(CO)12 cluster forms complexes with one or two equivalents of {SnII(Pc˙3-)}- to yield crystalline {Cryptand[2.2.2](Na+)}{Ru3(CO)11·SnII(Pc˙3-)}- (2) or {Cryptand[2.2.2](M+)}2{Ru3(CO)10·[SnII(Pc˙3-)]2}2-·4C6H4Cl2 (3) (M+ is K or Cs). Paramagnetic {SnII(Pc˙3-)}- species in 2 are packed in π-stacking [{SnII(Pc˙3-)}-]2 dimers, providing strong antiferromagnetic coupling of spins with exchange interaction J/kB = -19 K. Reduction of Ru3(CO)12, Os3(CO)12 and Ir4(CO)12 clusters by decamethylchromocene (Cp*2Cr) and subsequent oxidation of the reduced species by {SnIVCl2(Pc2-)}0 yield a series of complexes with high-spin Cp*2Cr+ counter cations (S = 3/2): (Cp*2Cr+){Ru3(CO)11·SnII(Pc˙3-)}-·C6H4Cl2 (4), (Cp*2Cr+){Os3(CO)10Cl·SnII(Pc˙3-)}-·C6H4Cl2 (5) and (Cp*2Cr+){Ir4(CO)11·SnII(Pc˙3-)}2- (6). It is seen that reduced clusters are oxidized by SnIV, which is transferred to SnII, whereas the Pc2- macrocycle is reduced to Pc˙3-. In the case of Os3(CO)12, oxidation of the metal atom in the cluster is observed to be accompanied by the formation of Os3(CO)10Cl with one OsI center. Rather weak magnetic coupling is observed between paramagnetic Cp*2Cr+ and {SnII(Pc˙3-)}- species in 4, but this exchange interaction is enhanced in 5 owing to Os3(CO)10Cl clusters with paramagnetic OsI (S = 1/2) also being involved in antiferromagnetic coupling of spins. The formation of {SnII(Pc˙3-)}- with radical trianion Pc˙3- macrocycles in 2-5 is supported by the appearance of new absorption bands in the NIR spectra and essential Nmeso-C bond alternation in Pc (for 3-5). On the whole, this work shows that both diamagnetic {SnII(Pc2-)}0 and paramagnetic {SnII(Pc˙3-)}- ligands substitute carbonyl ligands in the transition metal carbonyl clusters, forming well-soluble paramagnetic solids absorbing light in the visible and NIR ranges.

20.
Dalton Trans ; 49(46): 16801-16812, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33179677

RESUMEN

The reaction of GaIIIClPc, SnIVCl2TPP and BIIIClSubPc containing phthalocyanine (Pc), tetraphenylporphyrin (TPP) and subphthalocyanine (SubPc) macrocycles with cyanide in the presence of cryptand[2.2.2] under anaerobic conditions yields crystalline salts in which cyano anions substitute chloride anions at GaIII, SnIV or BIII, as well as reducing the macrocycles or adding one or two CN- to them. The reaction of GaIIICl(Pc2-) with CN- yields {crypt(K+)}{GaIIICN(Pc˙3-)}˙-·0.5C6H4Cl2 (1) in which the Pc2- macrocycle is reduced to Pc˙3-. Such reduction could probably occur through the addition of CN- to Pc2- forming {GaIII(CN)[Pc(CN)]3-}- which can decompose further interacting with an excess of CN-. As a result, Pc˙3- and cyanogene anions are formed. The interaction of SnIVCl2(TPP2-) with CN- is accompanied by the addition of CN- to the meso-carbon atom of porphyrin forming diamagnetic TPP(CN)3- macrocycles in {crypt(K+)}{SnIV(CN)2[TPP(CN)]3-}- (2). Salt 2 shows a strong NIR absorption band with the maximum at 854 nm whose intensity is comparable with that of the Soret band. The interaction of BIIICl(SubPc2-) with three equivalents of CN- is accompanied by the addition of two CN- to carbon atoms of SubPc2- closest to meso-nitrogen atoms forming {BIII(CN)[SubPc(CN)2]4-}2-. Most probably these dianions transfer electrons to C6H4Cl2 producing the {BIII(CN)[SubPc(CN)2]˙3-}˙- radical anions which form σ-bonded diamagnetic dianions in {crypt(K+)}2{BIII(CN)[SubPc(CN)2]}22-·3C6H4Cl2 (3). The remaining carbon atom closest to the meso-nitrogen atom is involved in this dimerization. According to the calculations, the energy of the C-CN bond is minimal for {GaIII(CN)[Pc(CN)]3-}- enabling further transformation of these anions to {GaIIICN(Pc˙3-)}˙- in 1, whereas cyano-containing anions in 2 and 3 with higher energy of this bond are stable towards the elimination of CN. Optical and magnetic properties of 1-3 together with their crystal and molecular structures are presented. The possible ways of the formation of 1-3 are discussed based on DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA