Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(28): e2301660, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178371

RESUMEN

Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.

2.
Opt Express ; 31(23): 38610-38624, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017962

RESUMEN

Optically Variable Devices (OVDs) are widely used as security features in anti-counterfeiting efforts. OVDs enable the display of color dynamic effects that are easily interpreted by the user. However, obtaining these elements over large areas poses certain challenges in terms of efficiency. The paper presents a modified approach for manufacturing plasmonic type OVDs through dot-matrix technology, which is a standard origination step of security holograms. By adjusting the spatial filters in the optical scheme, it is possible to double the resolution of the recorded quasi-sinusoidal diffraction gratings. The experiments confirm the creation of diffraction gratings with frequencies from 1600 to 3500 lines per mm, which facilitates the production of plasmonic zero-order spectral filters. The paper shows how the transmission characteristics of the studied elements are affected by the geometric parameters of the diffraction grating, silver layer thickness, angle of incidence, and polarization of light. The results have shown that using the proposed method it is possible to obtain 1D or 2D structural color OVD-image on a large area - several square centimeters and more. High speed recording of such elements is provided: the exposure time was from 120 to 400 ms depending on the grating resolution for a 0.05 mm2 frame, the total printing time for the size of the 25×25 mm2 OVD was about 2.5 hours for a 1D element, and less than 3.5 hours for a 2D element. Thus, the proposed method and the OVD elements produced by it can be useful to designers of optical security elements as a simpler and faster alternative to electron-beam lithographic technologies.

3.
Opt Lett ; 48(13): 3603-3606, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390191

RESUMEN

Femtosecond inscription of fiber Bragg gratings (FBGs) in each core of a cladding-pumped seven-core Yb-doped fiber enables efficient (≈70%) 1064-nm lasing in a robust all-fiber scheme with ≈33 W power, nearly the same for uncoupled and coupled cores. However, the output spectrum is quite different: without coupling, seven individual lines corresponding to the in-core FBG reflection spectra sum up into a broad (0.22 nm) total spectrum, whereas the multiline spectrum collapses into a single narrow line at strong coupling. The developed model shows that the coupled-core laser generates coherent superposition of supermodes at the wavelength corresponding to the geometric mean of the individual FBG spectra, whereas the generated laser line broadens, with a power (0.04-0.12 nm) like the single-core mode of a seven-times larger effective area.

4.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768523

RESUMEN

In searching for a tool for optimizing the band gap of a hybrid compound capable of serving as a light-harvesting material in lead-free photovoltaics, we synthesized a new polyiodoantimonate (HpipeH2)2[Sb2I10](I2) and analyzed its crystal and electronic structure by application of X-ray crystal structure analysis, Raman and diffuse reflectance spectroscopies, and quantum chemical calculations. It was demonstrated that I2 molecules link Sb2I10 edge-sharing octahedra into zig-zag chains, whereas the organic cations link inorganic anionic chains into a 3D structure featuring a complex pattern of covalent bonds and non-covalent interactions. Overall, these features provide the background for forming the electronic structure with a narrow band gap of 1.41 eV, therefore being a versatile tool for optimizing the band gap of a potential light-harvesting hybrid compound.


Asunto(s)
Electrónica , Polímeros , Aniones , Serogrupo
5.
Psychiatr Danub ; 35(Suppl 2): 141-149, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37800217

RESUMEN

BACKGROUND: Post-traumatic stress disorder (PTSD) is a trauma- or stressor-related mental health condition with high socioeconomic burden. We aimed in this review to identify promising genetic markers predisposing for PTSD, which might serve in the design subsequent studies aiming to develop PTSD prevention and remediation measures. SUBJECTS AND METHODS: Our search queries in the PubMed database yielded 547 articles, of which 20 met our inclusion criteria for further analysis: published between 2018 and 2022, original research, containing molecular-genetic and statistical data, containing diagnosis verification methods, PTSD as a primary condition, and a sample of at least 60 patients. RESULTS: Among the 20 analyzed studies were reports of significant associations between PTSD and: FKBP5 variants rs9470080, regardless of the C or T allele; two FKBP5 haplotypes (A-G-C-C and A-G-C-T); gene-gene DRDхANNK1-COMT (rs1800497 × rs6269) and OXTR-DRD2 (rs2268498 × rs1801028); C-allele of CRHR1 (rs1724402). Other findings, such as the association of FKBP5 haplotypes (A-G-C-C, A-G-C-T) and the FKBP5-CRHR1 genotype, were of lesser statistical significance and less extensively studied. CONCLUSIONS: Although our literature analysis implicates certain genetic factors in PTSD, our understanding of the polygenic nature underlying the disorder remains limited, especially considering the hitherto underexplored epigenetic mechanisms. Future research endeavors should prioritize exploring these aspects to provide a more nuanced understanding of PTSD and its genetic underpinnings.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/prevención & control , Trastornos por Estrés Postraumático/diagnóstico , Haplotipos , Polimorfismo de Nucleótido Simple , Genotipo , Alelos
6.
Psychiatr Danub ; 35(Suppl 2): 322-328, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37800249

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is a rare genetic disorder, in which, for the common childhood onset forms, loss of function of the SMA 5q gene leads to disability and death before adulthood. Symptomatic treatment focusses on respiratory and nutritional support, and physical therapy, but there is little consideration of psychiatric manifestations of SMA. The aim of this study was to explore blood biomarker levels, electromyography (EMG) data, and clinical manifestations, including psychiatric impairments, in patients with SMA 5q. Our objectives were twofold: First, to assess the clinical relevance of standard biomarkers, i.e., creatinine, creatine kinase (CK), and lactate dehydrogenase (LDH) levels, and second, to obtain data supporting the development of an effective prognostic algorithm for the course of this disease. RESULTS: We analyzed retrospective data from 112 medical records of 58 registered patients (2008-2022) with SMA. At the time of last registration, the 58 patients had a mean age 38.4 years [13.68; 55.0], of whom 32 (52%) were female. The subgroup of 21 pediatric patients had a mean age 12.32 years [6.57; 13.93], of whom 14 (24%) were girls. The ICD-10 diagnoses were as follows: G12.0 (n=7, 12%, children), G12.1 (n=14, 24% children; n=29, 50% adults), G12.8 (n=6, 10% adults), G12.9 (n=2, 1% adults). The archival data on psychiatric status indicated emotional lability (n=6, 10.3%), fatigue (n=10, 17.2%), and tearfulness (n=3, 5.2%) in some patients. There were no significant subgroup differences in serum creatinine and CK levels, but there were significant differences in LDH levels between the G12.0, G12.1, G12.8, and G12.9 subgroups. Among the serum biomarkers, only LDH levels showed significant differences among the subgroups of SMA 5q patients; higher levels in the G12.1, G12.8, and G12.9 groups compared to the G12.0 (infantile) group related to age, weight, gender, and level of physical activity. Data on psychiatric status were insufficient to identify group differences and associations with biomarker levels. Likewise, longitudinal data on repeat hospitalizations did not indicate associations with biomarker levels. CONCLUSIONS: Creatinine, CK, and LDH levels were insufficient for monitoring and predicting the course of SMA. Further prospective research is needed to elaborate the weak relationships between CK levels, the dynamics of the clinical presentation, and therapeutic interventions, and to investigate psychiatric co-morbidities in SMA 5q patients.


Asunto(s)
Atrofia Muscular Espinal , Adulto , Humanos , Niño , Femenino , Masculino , Estudios Retrospectivos , Creatinina/uso terapéutico , Atrofia Muscular Espinal/tratamiento farmacológico , Ejercicio Físico , Biomarcadores
7.
Opt Express ; 30(5): 8212-8221, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299567

RESUMEN

We develop a comprehensive theory for describing the experimental beam profiles from multimode fiber Raman lasers. We take into account the presence of random linear mode coupling, Kerr beam self-cleaning and intra-cavity spatial filtering. All of these factors play a decisive role in shaping the Stokes beam, which has a predominant fundamental mode content. Although the highly multimode pump beam is strongly depleted, it remains almost insensitive to the different physical effects. As a result, the intensity of the output Stokes beam is an order of magnitude higher than the pump intensity at its maximum, in quantitative agreement with the experimental results and in contrast with the simplified balance model.

8.
Opt Lett ; 47(5): 1222-1225, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230332

RESUMEN

All-fiber Raman lasers have demonstrated their potential for efficient conversion of highly multimode pump beams into high-quality Stokes beams. However, the modal content of these beams has not yet been investigated. In this work, based on a mode decomposition technique, we are able to reveal the details of intermodal interactions in the different operation regimes of continuous wave multimode graded-index fiber Raman lasers. We observed that, above the laser threshold, the residual pump beam is strongly depleted in its transverse modes with principal quantum number below 10. However, the generated Stokes signal beam mainly consists of the fundamental mode, but higher-order modes are also present, albeit with exponentially decreasing population.

9.
Inorg Chem ; 61(24): 9173-9183, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35670830

RESUMEN

Using a high-temperature ampoule technique and lead metal as a flux, we have grown single crystals and determined crystal structures from single-crystal X-ray diffraction data of two metal-rich phosphides, Sr5Pt12P9 (P 21/m, a = 6.1472(3) Å, b = 25.1713(13) Å, c = 6.4635(3) Å, ß = 99.604(2)°, Z = 2, R1 = 0.0326, wR2 = 0.0786) and BaPt3P2 (P 212121, a = 6.3605(6) Å, b = 6.8541(7) Å, c = 11.3493(12) Å, Z = 4, R1 = 0.0231, wR2 = 0.0501). Both compounds belong to their own structure types and feature 3D networks of Pt and P atoms, with the channels occupied by alkaline earth metal cations. Density functional theory calculations reveal Sr5Pt12P9 to be a metal, while BaPt3P2 is a narrow-gap semiconductor with a band gap of 0.24 eV. Bonding analysis shows that both compounds feature networks of prominent covalent localized Pt-P bonds, responsible for their structural stability, as well as additional weaker and, likely, less localized Pt-Pt interactions.

10.
Inorg Chem ; 61(1): 568-578, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34932353

RESUMEN

Transition metal-based endohedral cluster intermetallic compounds are interesting electron phases, which frequently exhibit superconductivity with a peculiar interplay between the critical temperature and valence electron count. We present a new Re-based endohedral gallium cluster compound, Re2Ga9Ge. Its unique crystal structure (P42/mmc space group, a = 8.0452(3) Å, c = 6.7132(2) Å) is built by two types of gallium polyhedra: monocapped Archimedean antiprisms centered by rhenium atoms and tetrahedra containing a main-group element inside. The analysis of chemical bonding shows the presence of localized pairwise interactions between the p-block elements and the formation of multicenter bonds with the participation of d-orbitals of rhenium. In the electronic band structure, the Fermi level is located in a narrow pseudogap indicating the optimum band filling and thus explaining the virtual absence of a homogeneity range. The compound exhibits Pauli paramagnetism and metallic properties with unexpectedly low thermal conductivity. A sharp anomaly observed on the magnetic susceptibility and resistivity curves presumably indicates the electronic phase transition accompanied by charge ordering at the characteristic temperature of T * = 271 K in zero magnetic field.

11.
Opt Express ; 29(13): 19441-19449, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266053

RESUMEN

The power scaling on all-fiberized Raman fiber oscillator with brightness enhancement (BE) based on multimode graded-index (GRIN) fiber is demonstrated. Thanks to beam cleanup of GRIN fiber itself and single-mode selection properties of the fiber Bragg gratings inscribed in the center of GRIN fiber, the efficient BE is realized. For the laser cavity with single OC FBG, continuous-wave power of 334 W with an M2 value of 2.8 and BE value of 5.6 were obtained at a wavelength of 1120 nm with an optical-to-optical efficiency of 49.6%. Furthermore, the cavity reflectivity is increased by employing two OC FBGs to scale the output power up to 443 W, while the corresponding M2 is 3.5 with BE of 4.2. To our best knowledge, it is the highest power in Raman oscillator based on GRIN fiber.

12.
Opt Lett ; 46(5): 1185-1188, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649688

RESUMEN

A brightness-enhanced random Raman fiber laser (RRFL) with maximum power of 306 W at 1120 nm is demonstrated. A half-open cavity is built based on a graded-index (GRIN) passive fiber and single high-reflective fiber Bragg grating written in it directly. Due to the beam cleanup effect in the GRIN fiber enhanced in the half-open RRFL cavity, the output beam quality factor M2 is improved from 9.15 (pump) to 1.76-2.35 (Stokes) depending on power, while the pump-Stokes brightness enhancement (BE) factor increases proportionally to output power reaching 6.1 at maximum. To the best of our knowledge, this is the highest power GRIN RRFL with BE.

13.
Health Care Manag Sci ; 24(2): 439-453, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33843005

RESUMEN

Demand for Personal Protective Equipment (PPE) such as surgical masks, gloves, and gowns has increased significantly since the onset of the COVID-19 pandemic. In hospital settings, both medical staff and patients are required to wear PPE. As these facilities resume regular operations, staff will be required to wear PPE at all times while additional PPE will be mandated during medical procedures. This will put increased pressure on hospitals which have had problems predicting PPE usage and sourcing its supply. To meet this challenge, we propose an approach to predict demand for PPE. Specifically, we model the admission of patients to a medical department using multiple independent [Formula: see text] queues. Each queue represents a class of patients with similar treatment plans and hospital length-of-stay. By estimating the total workload of each class, we derive closed-form estimates for the expected amount of PPE required over a specified time horizon using current PPE guidelines. We apply our approach to a data set of 22,039 patients admitted to the general internal medicine department at St. Michael's hospital in Toronto, Canada from April 2010 to November 2019. We find that gloves and surgical masks represent approximately 90% of predicted PPE usage. We also find that while demand for gloves is driven entirely by patient-practitioner interactions, 86% of the predicted demand for surgical masks can be attributed to the requirement that medical practitioners will need to wear them when not interacting with patients.


Asunto(s)
COVID-19 , Cuerpo Médico de Hospitales , Equipo de Protección Personal/provisión & distribución , Algoritmos , Análisis por Conglomerados , Predicción , Humanos , Distribución de Poisson , SARS-CoV-2
14.
Inorg Chem ; 59(17): 12748-12757, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845622

RESUMEN

Intermetallic compounds with semiconducting properties are rare, but they give rise to advanced materials for energy conversion and saving applications. Here, we present ReGa2Ge, a new electron-precise narrow-gap intermetallic semiconductor. The compound crystallizes in the IrIn3 structure type (space group P42/mnm, a = 6.5734(3) Å, c = 6.7450(8) Å, and Z = 4), where Re atoms occupy the Ir site, while Ga and Ge jointly populate the In sites. 69,71Ga nuclear quadrupole resonance spectroscopy indicates nonstatistical partially ordered distribution of Ga and Ge over two available crystallographic sites; however, the Ga:Ge ratio is exactly 2:1 without noticeable homogeneity range. The stoichiometry of ReGa2Ge ensures its precise valence electron count, which is 17 e- per formula unit. Accordingly, a narrow energy gap opens up at the Fermi energy in the electronic structure. Electrical resistivity, Seebeck coefficient, and thermal conductivity are in agreement with the semiconducting behavior deduced from the electronic structure calculations and point to prospective thermoelectric properties at high temperatures. Bonding analysis reveals dominant covalency in Re-E (E = Ga, Ge) and Re-Re interactions.

15.
Eur J Neurosci ; 50(3): 2282-2296, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30215874

RESUMEN

A large body of data has identified numerous molecular targets through which ethanol (EtOH) acts on brain circuits. Yet how these multiple mechanisms interact to result in dysregulated dopamine (DA) release under the influence of alcohol in vivo remains unclear. In this manuscript, we delineate potential circuit-level mechanisms responsible for EtOH-dependent dysregulation of DA release from the ventral tegmental area (VTA) into its projection areas. For this purpose, we constructed a circuit model of the VTA that integrates realistic Glutamatergic (Glu) inputs and reproduces DA release observed experimentally. We modelled the concentration-dependent effects of EtOH on its principal VTA targets. We calibrated the model to reproduce the inverted U-shape dose dependence of DA neuron activity on EtOH concentration. The model suggests a primary role of EtOH-induced boost in the Ih and AMPA currents in the DA firing-rate/bursting increase. This is counteracted by potentiated GABA transmission that decreases DA neuron activity at higher EtOH concentrations. Thus, the model connects well-established in vitro pharmacological EtOH targets with its in vivo influence on neuronal activity. Furthermore, we predict that increases in VTA activity produced by moderate EtOH doses require partial synchrony and relatively low rates of the Glu afferents. We propose that the increased frequency of transient (phasic) DA peaks evoked by EtOH results from synchronous population bursts in VTA DA neurons. Our model predicts that the impact of acute ETOH on dopamine release is critically shaped by the structure of the cortical inputs to the VTA.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Etanol/administración & dosificación , Modelos Neurológicos , Red Nerviosa/metabolismo , Área Tegmental Ventral/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Neuronas Dopaminérgicas/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
16.
Inorg Chem ; 58(4): 2822-2832, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30720267

RESUMEN

We report synthesis, crystal and electronic structure, and transport properties of new intermetallic compound ReGa0.4Ge0.6, which was obtained by two-step ampule method from the elements. ReGa0.4Ge0.6 crystallizes in its own structure type (space group I4/ mmm, a = 2.89222(3) Å, c = 15.1663(3) Å, and Z = 4) which can be described as a sequential alternation of blocks of rhenium atoms and blocks of gallium and germanium atoms. Chemical bonding analysis reveals pronounced covalency of Re-Re, Re-E, and E-E (E = Ga and Ge) interactions and an interesting bonding pattern that includes many variations of localized bonding within a single compound, including pairwise homo- and heterometallic bonding, three-centered homometallic and four-centered bonding, and possibly even more delocalized bonding, which is not often encountered in such a simple intermetallic compound. Metallic behavior is confirmed by electronic structure calculations and by measurements of electrical resistivity.

17.
Inorg Chem ; 58(5): 3435-3443, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30788958

RESUMEN

Four new transition metal-free pnictide representatives of the LaOAgS structure type were predicted by DFT calculations and found in the BaFMgPn (Pn = P, As, Sb and Bi) family. The compounds adopt the tetragonal space group P4 /nmm with the unit cell parameters a/ c 4.3097(1) Å/9.5032(1) Å, 4.3855(1) Å/9.5918(1) Å, 4.5733(1) Å/9.8184(1) Å, and 4.6359(1) Å/9.8599(1) Å, respectively. According to the DFT calculations, these new compounds are semiconductors with band gaps steadily decreasing from Pn = P ( ca. 2 eV) to Pn = Bi ( ca. 1 eV). The corresponding strontium fluoride and rare-earth oxide analogs are unlikely to exist and have not been observed yet. The trends of the stability within 1111 and structurally and/or chemically related compounds based on a combined consideration of geometry and DFT calculations are discussed.

18.
Inorg Chem ; 57(7): 4077-4087, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29565580

RESUMEN

We report the synthesis, crystal structures, and optical properties of two new compounds, K18Bi8I42(I2)0.5·14H2O (1) and (NH4)7Bi3I16(I2)0.5·4.5H2O (2), as well as the electronic structure of the latter. They crystallize in tetragonal space group P4/ mmm with the unit cell parameters a = 12.974(1) and c = 20.821(3) Å for 1 and a = 13.061(3) and c = 15.162(7) Å for 2. Though 1 and 2 are not isomorphous, their crystal structures display the same structural organization; namely, the BiI6 octahedra are linked by I2 units to form disordered layers in 1 and perfectly ordered chains in 2. The I-I bond distances in the thus formed I-I-I-I linear links are not uniform; the central bond is only slightly longer than in a standalone I2 molecule, whereas the peripheral bonds are significantly shorter than longer bonds typical for various polyiodides, which is confirmed by Raman spectroscopy. The analysis of the electronic structure shows that the atoms forming the I-I-I-I subunits transfer electron density from their occupied 5p orbitals onto their vacant states as well as onto 6s orbitals of bismuth atoms that center the BiI6 octahedra. This leads to low direct band gaps that were found to be 1.57 and 1.27 eV for 1 and 2, respectively, by optical absorption spectroscopy. Luminescent radiative relaxation was observed in the near-IR region with emission maxima of 1.39 and 1.24 eV for 1 and 2, respectively, in good agreement with the band structure, despite the strong quenching propensity of I2 moieties.

19.
Nat Mater ; 15(2): 154-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26657327

RESUMEN

Recent progress in the field of topological states of matter has largely been initiated by the discovery of bismuth and antimony chalcogenide bulk topological insulators (TIs; refs ,,,), followed by closely related ternary compounds and predictions of several weak TIs (refs ,,). However, both the conceptual richness of Z2 classification of TIs as well as their structural and compositional diversity are far from being fully exploited. Here, a new Z2 topological insulator is theoretically predicted and experimentally confirmed in the ß-phase of quasi-one-dimensional bismuth iodide Bi4I4. The electronic structure of ß-Bi4I4, characterized by Z2 invariants (1;110), is in proximity of both the weak TI phase (0;001) and the trivial insulator phase (0;000). Our angle-resolved photoemission spectroscopy measurements performed on the (001) surface reveal a highly anisotropic band-crossing feature located at the  point of the surface Brillouin zone and showing no dispersion with the photon energy, thus being fully consistent with the theoretical prediction.

20.
PLoS Comput Biol ; 12(12): e1005233, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27930673

RESUMEN

The dynamics of neuronal excitability determine the neuron's response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency "balanced" state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I excitability in dopamine neurons might be important for low firing rates and fine-tuning basal dopamine levels, while switching excitability to type II during NMDAR and AMPAR activation may facilitate a transient increase in dopamine concentration, as type II neurons are more amenable to synchronization by mutual excitation.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Modelos Neurológicos , Calcio/metabolismo , Biología Computacional , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA