Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Toxicol Appl Pharmacol ; 359: 24-33, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30236989

RESUMEN

Mitochondria play essential roles in cellular bioenergetics, biosynthesis, and apoptosis. During the process of respiration and oxidative phosphorylation, mitochondria utilize oxygen to generate ATP, and at the same time, there is an inevitable generation of reactive oxygen species (ROS). As excess ROS create oxidative stress and damage cells, the proper function of the antioxidant defense system is critical for eukaryotic cell survival under aerobic conditions. Nuclear factor, erythroid 2-like 2 (Nfe2l2/Nrf2) is a master transcription factor for regulating basal as well as inducible expression of multiple antioxidant proteins. Nrf2 has been involved in maintaining mitochondrial redox homeostasis by providing reduced forms of glutathione (GSH); the reducing cofactor NADPH; and mitochondrial antioxidant enzymes such as GSH peroxidase 1, superoxide dismutase 2, and peroxiredoxin 3/5. In addition, recent research advances suggest that Nrf2 contributes to mitochondrial regulation through more divergent intermolecular linkages. Nrf2 has been positively associated with mitochondrial biogenesis through the direct upregulation of mitochondrial transcription factors and is involved in the mitochondrial quality control system through mitophagy activation. Moreover, several mitochondrial proteins participate in regulating Nrf2 to form a reciprocal regulatory loop between mitochondria and Nrf2. Additionally, Nrf2 modulation in cancer cells leads to changes in the mitochondrial respiration system and cancer bioenergetics that overall affect cancer metabolism. In this review, we describe recent experimental observations on the relationship between Nrf2 and mitochondria, and further discuss the effects of Nrf2 on cancer mitochondria and metabolism.


Asunto(s)
Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Receptor Cross-Talk/efectos de los fármacos , Animales , Humanos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos
2.
Mol Pharm ; 14(3): 842-855, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28199124

RESUMEN

The clinical application of intracellular gene delivery via nanosized carriers is hindered by intracellular multistep barriers that limit high levels of gene expression. To solve these issues, four different intracellular or external stimuli that can efficiently activate a gene carrier, a gene, or a photosensitizer (pheophorbide A [PhA]) were assessed in this study. The designed nanosized polymeric gene complexes were composed of PhA-loaded thiol-degradable polycation (PhA@RPC) and cytomegalovirus (CMV) promoter-equipped pDNA. After cellular internalization of the resulting PhA@RPC/pDNA complexes, the complexes escaped endosomal sequestration, owing to the endosomal pH-induced endosomolytic activity of RPC in PhA@RPC. Subsequently, intracellular thiol-mediated polycation degradation triggered the release of PhA and pDNA from the complexes. Late exposure to light (for example, 12 h post-treatment) activated the released PhA and resulted in the production of reactive oxygen species (ROS). Intracellular ROS successively activated NF-κB, which then reactivated the CMV promoter in the pDNA. These sequential, stimuli-responsive chemical and biological reactions resulted in high gene expression. In particular, the time-point of light exposure was very significant to tune efficient gene expression as well as negligible cytotoxicity: early light treatment induced photochemical internalization but high cytotoxicity, whereas late light treatment influenced the reactivation of silent pDNA via PhA-generated ROS and activation of NF-κB. In conclusion, the quadruple triggers, such as pH, thiol, light, and ROS, successively influenced a gene carrier (RPC), a photosensitizer, and a genetic therapeutic, and the tempo-spatial activation of the designed quadruple stimuli-activatable nanosized gene complexes could be potential in gene delivery applications.


Asunto(s)
ADN/metabolismo , Expresión Génica/efectos de los fármacos , Nanopartículas/administración & dosificación , Polímeros/administración & dosificación , Línea Celular Tumoral , Clorofila/administración & dosificación , Clorofila/análogos & derivados , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Técnicas de Transferencia de Gen , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , FN-kappa B/metabolismo , Fármacos Fotosensibilizantes/administración & dosificación , Plásmidos/genética , Poliaminas/administración & dosificación , Polielectrolitos , Especies Reactivas de Oxígeno/metabolismo , Transfección/métodos
3.
Mol Pharmacol ; 87(3): 465-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25534417

RESUMEN

Overexpression of BCRP/ABCG2, a xenobiotic efflux transporter, is associated with anticancer drug resistance in tumors. Proto-oncogene c-MET induces cancer cell proliferation, motility, and survival, and its aberrant activation was found to be a prognostic factor in advanced ovarian cancers. In the present study, we investigated the potential crossresistance of doxorubicin-resistant ovarian cancer cells to the pheophorbide a (Pba)-based photodynamic therapy (PDT), and suggest c-MET and BCRP/ABCG2 overexpression as an underlying molecular mechanism. The doxorubicin-resistant A2780 cell line (A2780DR), which was established by incubating A2780 with stepwise increasing concentrations of doxorubicin, showed low levels of cellular Pba accumulation and reactive oxygen species generation, and was more resistant to PDT cytotoxicity than A2780. In a microarray analysis, BCRP/ABCG2 was found to be the only drug transporter whose expression was upregulated in A2780DR; this increase was confirmed by Western blot and immunocytochemical analyses. As functional evidence, the treatment with a BCRP/ABCG2-specific inhibitor reversed A2780DR resistance to both doxorubicin and PDT. We identified that c-MET increase is related to BCRP/ABCG2 activation. The c-MET downstream phosphoinositide 3-kinase (PI3K)/AKT signaling was activated in A2780DR and the inhibition of PI3K/AKT or c-MET repressed resistance to doxorubicin and PDT. Finally, we showed that the pharmacological and genetic inhibition of c-MET diminished levels of BCRP/ABCG2 in A2780DR. Moreover, c-MET inhibition could repress BCRP/ABCG2 expression in breast carcinoma MDA-MB-231 and colon carcinoma HT29, resulting in sensitization to doxorubicin. Collectively, our results provide a novel link of c-MET overexpression to BCRP/ABCG2 activation, suggesting that this mechanism leads to crossresistance to both chemotherapy and PDT.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Doxorrubicina/farmacología , Proteínas de Neoplasias/biosíntesis , Fosfatidilinositol 3-Quinasa/metabolismo , Fotoquimioterapia , Proteínas Proto-Oncogénicas c-met/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Resistencia a Antineoplásicos/efectos de la radiación , Regulación Neoplásica de la Expresión Génica , Humanos , Fotoquimioterapia/métodos , Proto-Oncogenes Mas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
4.
Mol Carcinog ; 53(11): 926-37, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24610641

RESUMEN

Peroxisome proliferator-activated receptor (PPAR) δ is highly expressed in colon epithelial cells and closely linked to colon carcinogenesis. However, the role of PPARδ in colon cancer cells in a hypoxic tumor microenvironment is not fully understood. We found that expression of the tumor-promoting cytokines, IL-8 and VEGF, induced by hypoxia (<1% O2) and deferoxamine (a hypoxia mimetic) was significantly attenuated in PPARδ-deficient HCT116 colon cancer cells. Consequently, PPARδ-knockout colon cancer cells exposed to hypoxia and deferoxamine failed to stimulate endothelial cell vascularization and macrophage migration/proliferation, whereas wild-type cells were able to induce angiogenesis and macrophage activation in response to hypoxic stress. Hypoxic stress induced transcriptional activation of PPARδ, but not its protein expression, in HCT116 cells. Exogenous expression of p300 potentiated deferoxamine-induced PPARδ transactivation, while siRNA knockdown of p300 abolished hypoxia- and deferoxamine-induced PPARδ transactivation. PPARδ associated with p300 upon hypoxic stress as demonstrated by coimmunoprecipitation studies. PI3K inhibitors or siRNA knockdown of Akt suppressed the PPARδ transactivation induced by hypoxia and deferoxamine in HCT116 cells, leading to decreased expression of IL-8 and VEGF. Collectively, these results reveal that PPARδ is required for hypoxic stress-mediated cytokine expression in colon cancer cells, resulting in promotion of angiogenesis, macrophage recruitment, and macrophage proliferation in the tumor microenvironment. p300 and the PI3K/Akt pathway play a role in the regulation of PPARδ transactivation induced by hypoxic stress. Our results demonstrate the positive crosstalk between PPARδ in tumor cells and the hypoxic tumor microenvironment and provide potential therapeutic targets for colon cancer.


Asunto(s)
Neoplasias del Colon/genética , Proteína p300 Asociada a E1A/genética , PPAR delta/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/genética , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colon/citología , Colon/metabolismo , Neoplasias del Colon/irrigación sanguínea , Deferoxamina/farmacología , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-8/biosíntesis , Macrófagos/patología , Neovascularización Patológica/genética , Interferencia de ARN , ARN Interferente Pequeño , Activación Transcripcional , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/biosíntesis
5.
BMC Complement Altern Med ; 14: 72, 2014 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-24559113

RESUMEN

BACKGROUND: Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice. METHODS: WT and N0 cells were treated with 5 and 10 µg/ml of PB for 10 and 12-h for the determination of nuclear translocation of Nrf2 protein. Luciferase reporter gene activity was performed to evaluate the antioxidant response element (ARE)-induction by PB. Real-time PCR and Western blot were conducted on both WT and N0 cells after PB treatment for the determination of antioxidant enzymes [superoxide dismutase (SOD1) and heme-oxygenase (HO-1)], phase I oxidoreductase enzymes [ NAD(P)H: quinone oxidoreductase (NQO1)] and phase II detoxifying enzyme [glutathione S-transferase (GST)]. RESULTS: Nuclear translocation of Nrf2 by PB in WT cells was better after 10 h incubation compared to 12 h. Real time PCR and Western blot analysis showed increased expressions of Nrf2, NQO1 and GSTA1 genes with corresponding increases in glutathione, NQO1 and HO-1 proteins in WT cells. Reporter gene ARE was stimulated by PB as shown by ARE/luciferase assay. Interestingly, PB induced SOD1 gene and protein expressions in N0 cells but not in WT cells. CONCLUSION: The results of this study confirmed that PB activated Nrf2-ARE signaling pathway which subsequently induced some phase I oxidoreductase, phase II detoxifying and antioxidant genes expression via ARE reporter gene involved in the Nrf2 pathway with the exception of SOD1 which may not be dependent on this pathway.


Asunto(s)
Elementos de Respuesta Antioxidante , Antioxidantes/metabolismo , Inactivación Metabólica/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piper betle , Extractos Vegetales/farmacología , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Fase I de la Desintoxicación Metabólica/genética , Fase II de la Desintoxicación Metabólica/genética , Ratones , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Transducción de Señal
6.
Molecules ; 19(8): 12727-59, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25140450

RESUMEN

Chronic kidney disease (CKD) is featured by a progressive decline of kidney function and is mainly caused by chronic diseases such as diabetes mellitus and hypertension. CKD is a complex disease due to cardiovascular complications and high morbidity; however, there is no single treatment to improve kidney function in CKD patients. Since biological markers representing oxidative stress are significantly elevated in CKD patients, oxidative stress is receiving attention as a contributing factor to CKD pathology. Nuclear factor erythroid-2 related factor 2 (NRF2) is a predominant transcription factor that regulates the expression of a wide array of genes encoding antioxidant proteins, thiol molecules and their generating enzymes, detoxifying enzymes, and stress response proteins, all of which can counteract inflammatory and oxidative damages. There is considerable experimental evidence suggesting that NRF2 signaling plays a protective role in renal injuries that are caused by various pathologic conditions. In addition, impaired NRF2 activity and consequent target gene repression have been observed in CKD animals. Therefore, a pharmacological intervention activating NRF2 signaling can be beneficial in protecting against kidney dysfunction in CKD. This review article provides an overview of the role of NRF2 in experimental CKD models and describes current findings on the renoprotective effects of naturally occurring NRF2 activators, including sulforaphane, resveratrol, curcumin, and cinnamic aldehyde. These experimental results, coupled with recent clinical experiences with a synthetic triterpenoid, bardoxolone methyl, have brought a light of hope for ameliorating CKD progression by preventing oxidative stress and maintaining cellular redox homeostasis.


Asunto(s)
Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Insuficiencia Renal Crónica/genética , Animales , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/patología , Masculino , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/genética
7.
Arch Pharm Res ; 47(5): 465-480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38734854

RESUMEN

Tumor necrosis factor alpha (TNF-α), an abundant inflammatory cytokine in the tumor microenvironment (TME), is linked to breast cancer growth and metastasis. In this study, we established MCF10A cell lines incubated with TNF-α to investigate the effects of continuous TNF-α exposure on the phenotypic change of normal mammary epithelial cells. The established MCF10A-LE cell line, through long-term exposure to TNF-α, displayed cancer-like features, including increased proliferation, migration, and sustained survival signaling even in the absence of TNF-α stimulation. Unlike the short-term exposed cell line MCF10A-SE, MCF10A-LE exhibited elevated levels of epidermal growth factor receptor (EGFR) and subsequent TNF receptor 2 (TNFR2), and silencing of EGFR or TNFR2 suppressed the cancer-like phenotype of MCF10A-LE. Notably, we demonstrated that the elevated levels of NAD(P)H oxidase 4 (NOX4) and the resulting increase in reactive oxygen species (ROS) were associated with EGFR/TNFR2 elevation in MCF10A-LE. Furthermore, mammosphere-forming capacity and the expression of cancer stem cell (CSC) markers increased in MCF10A-LE. Silencing of EGFR reversed these effects, indicating the acquisition of CSC-like properties via EGFR signaling. In conclusion, our results reveal that continuous TNF-α exposure activates the EGFR/TNFR2 signaling pathway via the NOX4/ROS axis, promoting neoplastic changes in mammary epithelial cells within the inflammatory TME.


Asunto(s)
Neoplasias de la Mama , Células Epiteliales , Receptores ErbB , Fenotipo , Receptores Tipo II del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa , Humanos , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores ErbB/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Movimiento Celular/efectos de los fármacos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Glándulas Mamarias Humanas/efectos de los fármacos , Microambiente Tumoral , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral
8.
Exp Mol Med ; 56(3): 501-514, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424190

RESUMEN

Oxygen is crucial for life and acts as the final electron acceptor in mitochondrial energy production. Cells adapt to varying oxygen levels through intricate response systems. Hypoxia-inducible factors (HIFs), including HIF-1α and HIF-2α, orchestrate the cellular hypoxic response, activating genes to increase the oxygen supply and reduce expenditure. Under conditions of excess oxygen and resulting oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2) activates hundreds of genes for oxidant removal and adaptive cell survival. Hypoxia and oxidative stress are core hallmarks of solid tumors and activated HIFs and NRF2 play pivotal roles in tumor growth and progression. The complex interplay between hypoxia and oxidative stress within the tumor microenvironment adds another layer of intricacy to the HIF and NRF2 signaling systems. This review aimed to elucidate the dynamic changes and functions of the HIF and NRF2 signaling pathways in response to conditions of hypoxia and oxidative stress, emphasizing their implications within the tumor milieu. Additionally, this review explored the elaborate interplay between HIFs and NRF2, providing insights into the significance of these interactions for the development of novel cancer treatment strategies.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias , Humanos , Hipoxia de la Célula , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/patología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Oxígeno , Microambiente Tumoral
9.
Mol Cells ; 46(3): 153-164, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36994474

RESUMEN

Cancer stem cells (CSCs) are a small population of tumor cells characterized by self-renewal and differentiation capacity. CSCs are currently postulated as the driving force that induces intra-tumor heterogeneity leading to tumor initiation, metastasis, and eventually tumor relapse. Notably, CSCs are inherently resistant to environmental stress, chemotherapy, and radiotherapy due to high levels of antioxidant systems and drug efflux transporters. In this context, a therapeutic strategy targeting the CSC-specific pathway holds a promising cure for cancer. NRF2 (nuclear factor erythroid 2-like 2; NFE2L2) is a master transcription factor that regulates an array of genes involved in the detoxification of reactive oxygen species/electrophiles. Accumulating evidence suggests that persistent NRF2 activation, observed in multiple types of cancer, supports tumor growth, aggressive malignancy, and therapy resistance. Herein, we describe the core properties of CSCs, focusing on treatment resistance, and review the evidence that demonstrates the roles of NRF2 signaling in conferring unique properties of CSCs and the associated signaling pathways.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fenotipo
10.
Redox Biol ; 60: 102632, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791645

RESUMEN

The acquisition of the cancer stem cell (CSC) properties is often mediated by the surrounding microenvironment, and tumor hypoxia is considered an important factor for CSC phenotype development. High levels of NRF2 (Nuclear Factor Erythroid 2-Like 2; NFE2L2), a transcription factor that maintains cellular redox balance, have been associated with facilitated tumor growth and therapy resistance. In this study, we investigated the role of NRF2 in hypoxia-induced CSC phenotypes in colorectal cancer cells. Chronic hypoxia for 72 h resulted in CSC phenotypes, including elevation of krupple-like factor 4 (KLF4) and octamer-binding transcription factor 4 (OCT4), and an increase in cancer migration and spheroid growth with concomitant hypoxia-inducible factor 2α (HIF-2α) accumulation. All these chronic hypoxia-induced CSC properties were attenuated following HIF-2α-specific silencing. In this chronic hypoxia model, NRF2 inhibition by shRNA-based silencing or brusatol treatment blocked HIF-2α accumulation, which consequently resulted in decreased CSC marker expression and inhibition of CSC properties such as spheroid growth. In contrast, NRF2 overactivation by genetic or chemical approach enhanced the chronic hypoxia-induced HIF-2α accumulation and cancer migration. As a molecular mechanism of the NRF2-inhibition-mediated HIF-2α dysregulation, we demonstrated that miR-181a-2-3p, whose expression is elevated in NRF2-silenced cells, targeted the HIF-2α 3'UTR and subsequently suppressed the chronic hypoxia-induced HIF-2α and CSC phenotypes. The miR-181a-2-3p inhibitor treatment in NRF2-silenced cells could restore the levels of HIF-2α and CSC markers, and increased cancer migration and sphere formation under chronic hypoxia. In line with this, the miR-181a-2-3p inhibitor transfection could increase tumorigenicity of NRF2-silenced colorectal cancer cells. Collectively, our study suggests the involvement of NRF2/miR181a-2-3p signaling in the development of HIF-2α-mediated CSC phenotypes in sustained hypoxic environments.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Hipoxia/metabolismo , Hipoxia de la Célula/genética , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Colorrectales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
11.
Toxicol Appl Pharmacol ; 258(1): 89-98, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22036727

RESUMEN

Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways.


Asunto(s)
Hemo-Oxigenasa 1/fisiología , Nanopartículas del Metal/toxicidad , Factor 2 Relacionado con NF-E2/fisiología , Transducción de Señal/fisiología , Plata/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Daño del ADN , Humanos , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
12.
Toxicol Appl Pharmacol ; 264(3): 431-8, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22959925

RESUMEN

The ubiquitin-proteasome system plays a central role in protein quality control through endoplasmic reticulum (ER)-associated degradation (ERAD) of unfolded and misfolded proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that controls the expression of an array of phase II detoxification and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits in several cell types. Here, we investigated the role of Nrf2 in tunicamycin-induced ER stress using a murine insulinoma ß-cell line, ßTC-6. shRNA-mediated silencing of Nrf2 expression in ßTC-6 cells significantly increased tunicamycin-induced cytotoxicity, elevated the expression of the pro-apoptotic ER stress marker Chop10, and inhibited tunicamycin-inducible expression of the proteasomal catalytic subunits Psmb5 and Psmb6. The effects of 3H-1,2-dithiole-3-thione (D3T), a small molecule Nrf2 activator, on ER stress were also examined in ßTC-6 cells. D3T pretreatment reduced tunicamycin cytotoxicity and attenuated the tunicamycin-inducible Chop10 and protein kinase RNA-activated-like ER kinase (Perk). The protective effect of D3T was shown to be associated with increased ERAD. D3T increased the expression of Psmb5 and Psmb6 and elevated chymotrypsin-like peptidase activity; proteasome inhibitor treatment blocked D3T effects on tunicamycin cytotoxicity and ER stress marker changes. Similarly, silencing of Nrf2 abolished the protective effect of D3T against ER stress. These results indicate that the Nrf2 pathway contributes to the ER stress response in pancreatic ß-cells by enhancing proteasome-mediated ERAD.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Fisiológico/efectos de los fármacos , Animales , Western Blotting , Línea Celular Tumoral , Retículo Endoplásmico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Ratones , Factor 2 Relacionado con NF-E2/genética , Complejo de la Endopetidasa Proteasomal , ARN/genética , ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tunicamicina/toxicidad
13.
J Immunol ; 184(1): 411-9, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19949083

RESUMEN

TLRs are pattern recognition receptors that detect invading microorganisms and nonmicrobial endogenous molecules to trigger immune and inflammatory responses during host defense and tissue repair. TLR activity is closely linked to the risk of many inflammatory diseases and immune disorders. Therefore, TLR signaling pathways can provide efficient therapeutic targets for chronic diseases. Sulforaphane (SFN), an isothiocyanate, has been well known for its anti-inflammatory activities. In this study, we investigated the modulation of TLR activity by SFN and the underlying mechanism. SFN suppressed ligand-induced and ligand-independent TLR4 activation because it prevented IL-1R-associated kinase-1 degradation, activation of NF-kappaB and IFN regulatory factor 3, and cyclooxygenase-2 expression induced by LPS or overexpression of TLR4. Receptor oligomerization, which is one of the initial and critical events of TLR4 activation, was suppressed by SFN, resulting in the downregulation of NF-kappaB activation. SFN formed adducts with cysteine residues in the extracellular domain of TLR4 as confirmed by liquid chromatography-tandem mass spectrometry analysis and the inhibitory effects of SFN on oligomerization and NF-kappaB activation were reversed by thiol donors (DTT and N-acetyl-L-cysteine). These suggest that the reactivity of SFN to sulfhydryl moiety contributes to its inhibitory activities. Blockade of TLR4 signaling by SFN resulted in the reduced production of inflammatory cytokines and the decreased dermal inflammation and edema in vivo in experimental inflammatory animal models. Collectively, our results demonstrated that SFN downregulated TLR4 signaling through the suppression of oligomerization process in a thiol-dependent manner. These present a novel mechanism for beneficial effects of SFN and a novel anti-inflammatory target in TLR4 signaling.


Asunto(s)
Antiinflamatorios/farmacología , Transducción de Señal/efectos de los fármacos , Tiocianatos/farmacología , Receptor Toll-Like 4/efectos de los fármacos , Animales , Western Blotting , Línea Celular , Cromatografía Liquida , Activación Enzimática/efectos de los fármacos , Activación Enzimática/inmunología , Femenino , Humanos , Inmunoprecipitación , Isotiocianatos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/efectos de los fármacos , FN-kappa B/inmunología , Transducción de Señal/inmunología , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/inmunología , Sulfóxidos , Espectrometría de Masas en Tándem , Receptor Toll-Like 4/química , Receptor Toll-Like 4/inmunología , Transfección
14.
Biomol Ther (Seoul) ; 30(4): 368-379, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35768333

RESUMEN

Hyaluronic acid (HA), a ligand of CD44, accumulates in some types of tumors and is responsible for tumor progression. The nuclear factor erythroid 2-like 2 (NRF2) regulates cytoprotective genes and drug transporters, which promotes therapy resistance in tumors. Previously, we showed that high levels of CD44 are associated with NRF2 activation in cancer stem like-cells. Herein, we demonstrate that HA production was increased in doxorubicin-resistant breast cancer MCF7 cells (MCF7-DR) via the upregulation of HA synthase-2 (HAS2). HA incubation increased NRF2, aldo-keto reductase 1C1 (AKR1C1), and multidrug resistance gene 1 (MDR1) levels. Silencing of HAS2 or CD44 suppressed NRF2 signaling in MCF7-DR, which was accompanied by increased doxorubicin sensitivity. The treatment with a HAS2 inhibitor, 4-methylumbelliferone (4-MU), decreased NRF2, AKR1C1, and MDR1 levels in MCF7-DR. Subsequently, 4-MU treatment inhibited sphere formation and doxorubicin resistance in MCF7-DR. The Cancer Genome Atlas (TCGA) data analysis across 32 types of tumors indicates the amplification of HAS2 gene is a common genetic alteration and is negatively correlated with the overall survival rate. In addition, high HAS2 mRNA levels are associated with increased NRF2 signaling and poor clinical outcome in breast cancer patients. Collectively, these indicate that HAS2 elevation contributes to chemoresistance and sphere formation capacity of drug-resistant MCF7 cells by activating CD44/NRF2 signaling, suggesting a potential benefit of HAS2 inhibition.

15.
Arch Biochem Biophys ; 507(2): 356-64, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21211512

RESUMEN

Co-operated regulation of oxidative stress-response transcription factors would be an important issue for animals to determine the cell fate under environmental stress. This notion raises a possibility that NF-E2-related factor 2 (Nrf2), which confers cytoprotection against oxidative stress, and p53 can have a direct co-regulation network. In the current study, we have indentified that the expression of murine double minute 2 (Mdm2) is repressed in nrf2-deleted murine embryonic fibroblasts (MEFs). This was confirmed by microarray, RT-PCR, and immunoblot analyses, and further promoter analysis showed that Nrf2 is directly involved in the basal expression of Mdm2 through the antioxidant response element, which is located in the first intron of this gene. This linkage between Nrf2 and Mdm2 appears to cause the accumulation of p53 protein in nrf2-deficent MEFs. In addition, we show that ovarian carcinoma A2780 cells with Nrf2 shRNA expression displayed higher levels of p53 activation in response to hydrogen peroxide treatment, leading to increased cell death. Collectively, our results suggest novel evidence that the inhibition of Nrf2 can suppress Mdm2 expression, which may result in p53 signaling modulation. In addition, this observation supports the concept that Nrf2 inhibition in cancer cells can facilitate apoptotic response upon environmental stress.


Asunto(s)
Regulación de la Expresión Génica , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antioxidantes/metabolismo , Línea Celular Tumoral , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Intrones/genética , Ratones , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética
16.
Arch Pharm Res ; 44(3): 263-280, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33754307

RESUMEN

The transcription factor nuclear factor erythroid 2-like 2 (NEF2L2; NRF2) plays crucial roles in the defense system against electrophilic or oxidative stress by upregulating an array of genes encoding antioxidant proteins, electrophile/reactive oxygen species (ROS) detoxifying enzymes, and drug efflux transporters. In contrast to the protective roles in normal cells, the multifaceted role of NRF2 in tumor growth and progression, resistance to therapy and intratumoral stress, and metabolic adaptation is rapidly expanding, and the complex association of NRF2 with cancer signaling networks is being unveiled. In particular, the implication of NRF2 signaling in cancer stem cells (CSCs), a small population of tumor cells responsible for therapy resistance and tumor relapse, is emerging. Here, we described the dark side of NRF2 signaling in cancers discovered so far. A particular focus was put on the role of NRF2 in CSCs maintenance and therapy resistance, showing that low ROS levels and refractory drug response of CSCs are mediated by the activation of NRF2 signaling. A better understanding of the roles of the NRF2 pathway in CSCs will allow us to develop a novel therapeutic approach to control tumor relapse after therapy.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Humanos , Neoplasias/patología , Células Madre Neoplásicas/patología
17.
Front Oncol ; 11: 808300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155201

RESUMEN

Cancer stem cells (CSCs) exhibit intrinsic therapy/stress resistance, which often cause cancer recurrence after therapy. In this study, we investigated the potential relationship between the cluster of differentiation (CD)-133, a CSC marker of colon cancer, and nuclear factor erythroid 2-like 2 (NFE2L2; NRF2), a master transcription factor for the regulation of multiple antioxidant genes. In the first model of CSC, a sphere culture of the colorectal cell line HCT116, showed increased levels of CD133 and NRF2. Silencing of CD133 reduced the levels of CSC markers, such as Kruppel-like factor 4 (KLF4) and ATP-binding cassette subfamily G member 2 (ABCG2), and further suppressed the expression levels of NRF2 and its target genes. As a potential molecular link, CD133-mediated activation of phosphoinositide 3-kinase/serine-threonine kinase (PI3K/AKT) signaling appears to increase the NRF2 protein levels via phosphorylation and the consequent inhibition of glycogen synthase kinase (GSK)-3ß. Additionally, NRF2-silenced HCT116 cells showed attenuated sphere formation capacity and reduced CSC markers expression, indicating the critical role of the NRF2 pathway in the development of CSC-like properties. As a second model of CSC, the CD133high cell population was isolated from HCT116 cells. CSC-like properties, including sphere formation, motility, migration, colony formation, and anticancer resistance, were enhanced in the CD133high population compared to CD133low HCT116 cells. Levels of NRF2, which were elevated in CD133high HCT116, were suppressed by CD133-silencing. In line with these, the analysis of The Cancer Genome Atlas (TCGA) database showed that high levels of CD133 expression are correlated with increased NRF2 signaling, and alterations in CD133 gene or expression are associated with unfavorable clinical outcome in colorectal carcinoma patients. These results indicate that the CD133/NRF2 axis contributes to the development of CSC-like properties in colon cancer cells, and that PI3K/AKT signaling activation is involved in CD133-mediated NRF2 activation.

18.
Biochem Pharmacol ; 184: 114391, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33359069

RESUMEN

The prevalence of chronic kidney disease is increasing globally; however, effective therapeutic options are limited. In this study, we aimed to identify urinary miRNAs reflecting the effect of therapeutic intervention in rats with comorbid hypertension and diabetes. Additionally, the potential beneficial effects of anti-platelet sarpogrelate and cilostazol were investigated. Nephropathy progression in streptozotocin (STZ)-treated spontaneously hypertensive rats (SHRs), including albuminuria, collagen deposition, and histopathological changes, was alleviated by sarpogrelate and antihypertensive agent telmisartan. Global analysis of urinary miRNAs identified that miR-199a-3p was commonly reduced by sarpogrelate and telmisartan treatment. In vitro analysis suggested CD151 as a target gene of miR-199a-3p: miR-199a-3p overexpression repressed CD151 levels and miR-199a-3p interacted with the 3'-untranslated region of the CD151 gene. In addition, we demonstrated that the miR-199a-3p/CD151 axis is associated with the transforming growth factor-ß1 (TGF-ß1)-induced fibrogenic pathway. TGF-ß1 treatment led to miR-199a-3p elevation and CD151 suppression, and miR-199a-3p overexpression or CD151-silencing enhanced TGF-ß1-inducible collagen IV and α-smooth muscle actin (α-SMA) levels. In vivo analysis showed that the decrease in CD151 and the increase in collagen IV and α-SMA in the kidney from STZ-treated SHR were restored by sarpogrelate and telmisartan administration. In an additional animal experiment using cilostazol and telmisartan, there was a correlation between urinary miR-199a-3p reduction and the ameliorating effects of cilostazol or combination with telmisartan. Collectively, these results indicate that urinary miR-199a-3p might be utilized as a marker for nephropathy treatment. We also provide evidence of the benefits of antiplatelet sarpogrelate and cilostazol in nephropathy progression.


Asunto(s)
Cilostazol/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Hipertensión Renal/tratamiento farmacológico , MicroARNs/orina , Nefritis/tratamiento farmacológico , Succinatos/farmacología , Animales , Biomarcadores Farmacológicos/orina , Nefropatías Diabéticas/genética , Modelos Animales de Enfermedad , Hipertensión Renal/genética , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Nefritis/genética , Ratas Wistar , Tetraspanina 24/genética , Tetraspanina 24/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Resultado del Tratamiento
19.
Carcinogenesis ; 31(7): 1230-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20478922

RESUMEN

Bortezomib is a proteasome inhibitor approved for anticancer therapy. However, variable sensitivity of tumor cells exists in this therapy probably due to differences in the expression of proteasome subunits. G(alpha)(12/13) serves modulators or signal transducers in diverse pathways. This study investigated whether cancer cells display differential sensitivity to bortezomib with reference to G(alpha)(12/13) expression, and if so, whether G(alpha)(12/13) affects the expression of proteasome subunits and their activities. Bortezomib treatment exhibited greater sensitivities in Huh7 and SNU886 cells (epithelial type) than SK-Hep1 and SNU449 cells (mesenchymal type) that exhibited higher levels of G(alpha)(12/13). Overexpression of an active mutant of G(alpha)(12) (Galpha(12)QL) or G(alpha)(13) (G(alpha)(13)QL) diminished the ability of bortezomib to induce cytotoxicity in Huh7 cells. Moreover, transfection with the minigene that disturbs G protein-coupled receptor-G protein coupling (CT12 or CT13) increased it in SK-Hep1 cells. Consistently, MiaPaCa2 cells transfected with CT12 or CT13 exhibited a greater sensitivity to bortezomib. Evidence of G(alpha)(12/13)'s antagonism on the anticancer effect of bortezomib was verified in the reversal by G(alpha)(12)QL or G(alpha)(13)QL of the minigenes' enhancement of cytotoxity. Real-time polymerase chain reaction assay enabled us to identify PSMB5, multicatalytic endopeptidase complex-like-1, and proteasome activator subunit-1 repression by CT12 or CT13. Furthermore, G(alpha)(12/13) inhibition enhanced the ability of bortezomib to repress PSMB5, as shown by immunoblotting and proteasome activity assay. Moreover, this inhibitory effect on PSMB5 was attenuated by G(alpha)G(alpha)(12)QL or G(alpha)(13)QL. In conclusion, the inhibition of G(alpha)(12/13) activities may enhance the anticancer effect of bortezomib through PSMB5 repression, providing insight into the G(alpha)(12/13) pathway for the regulation of proteasomal activity.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Borónicos/farmacología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/fisiología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasoma , Pirazinas/farmacología , Bortezomib , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular , Subunidades alfa de la Proteína de Unión al GTP G12-G13/antagonistas & inhibidores , Humanos , Etiquetado Corte-Fin in Situ , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Complejo de la Endopetidasa Proteasomal/genética , ARN Mensajero/análisis
20.
Toxicol Appl Pharmacol ; 244(1): 66-76, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19732782

RESUMEN

Modulation of the metabolism and disposition of carcinogens through induction of cytoprotective enzymes is one of several promising strategies to prevent cancer. Chemopreventive efficacies of inducers such as dithiolethiones and sulforaphane have been extensively studied in animals as well as in humans. The KEAP1-NRF2 system is a key, but not unilateral, molecular target for these chemopreventive agents. The transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of the expression of a subset of genes, which produce proteins responsible for the detoxication of electrophiles and reactive oxygen species as well as the removal or repair of some of their damage products. It is believed that chemopreventive enzyme inducers affect the interaction between KEAP1 and NRF2 through either mediating conformational changes of the KEAP1 protein or activating phosphorylation cascades targeting the KEAP1-NRF2 complex. These events in turn affect NRF2 stability and trafficking. Recent advances elucidating the underlying structural biology of KEAP1-NRF2 signaling and identification of the gene clusters under the transcriptional control of NRF2 are facilitating understanding of the potential pleiotropic effects of NRF2 activators and discovery of novel classes of potent chemopreventive agents such as the triterpenoids. Although there is appropriately a concern regarding a deleterious role of the KEAP1-NRF2 system in cancer cell biology, especially as the pathway affects cell survival and drug resistance, the development and the use of NRF2 activators as chemopreventive agents still holds a great promise for protection of normal cells from a diversity of environmental stresses that contribute to the burden of cancer and other chronic, degenerative diseases.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/prevención & control , Transducción de Señal , Animales , Anticarcinógenos/farmacología , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Citoprotección , Inducción Enzimática , Humanos , Inactivación Metabólica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias/etiología , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA