Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888168

RESUMEN

Supramolecular block copolymers, derived via seeded living polymerization, are increasingly recognized for their rich structural and functional diversity, marking them as cutting-edge materials. The use of metal complexes in supramolecular block copolymerization not only offers a broad range of block copolymers through the structural similarity in the coordination geometry of the central metal ion but also controls spectroscopic properties, such as emission wavelength, emission strength, and fluorescence lifetime. However, the exploration of metallosupramolecular multiblock copolymerization based on metal complexes remains quite limited. In this work, we present a pioneering synthesis of metallosupramolecular multiblock copolymers utilizing Eu3+ and Tb3+ complexes as building blocks. This is achieved through the strategic manipulation of nonequilibrium self-assemblies via a living supramolecular polymerization approach. Our comprehensive exploration of both thermodynamically and kinetically regulated metallosupramolecular polymerizations, centered around Eu3+ and Tb3+ complexes with bisterpyridine-modified ligands containing R-alanine units and a long alkyl group, has highlighted intriguing behaviors. The monomeric [R-L1Eu(NO3)3] complex generates a spherical structure as the kinetic product. In contrast, the monomeric [R-L1Eu2(NO3)6] complex generates fiber aggregates as a thermodynamic product through intermolecular interactions such as π-π stacking, hydrophobic interaction, and H-bonds. Utilizing the Eu3+ complex, we successfully conducted seed-induced living polymerization of the monomeric building unit under kinetically regulated conditions. This yielded a metallosupramolecular polymer of precisely controlled length with minimal polydispersity. Moreover, by copolymerizing the kinetically confined Tb3+ complex state ("A" species) with a seed derived from the Eu3+ complex ("B" species), we were able to fabricate metallosupramolecular tri- and pentablock copolymers with A-B-A, and B-A-B-A-B types, respectively, through a seed-end chain-growth mechanism.

2.
J Am Chem Soc ; 145(33): 18414-18431, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37525328

RESUMEN

Lysosomes remain powerful organelles and important targets for cancer therapy because cancer cell proliferation is greatly dependent on effective lysosomal function. Recent studies have shown that lysosomal membrane permeabilization induces cell death and is an effective way to treat cancer by bypassing the classical caspase-dependent apoptotic pathway. However, most lysosome-targeted anticancer drugs have very low selectivity for cancer cells. Here, we show intra-lysosomal self-assembly of a peptide amphiphile as a powerful technique to overcome this problem. We designed a peptide amphiphile that localizes in the cancer lysosome and undergoes cathepsin B enzyme-instructed supramolecular assembly. This localized assembly induces lysosomal swelling, membrane permeabilization, and damage to the lysosome, which eventually causes caspase-independent apoptotic death of cancer cells without conventional chemotherapeutic drugs. It has specific anticancer effects and is effective against drug-resistant cancers. Moreover, this peptide amphiphile exhibits high tumor targeting when attached to a tumor-targeting ligand and causes significant inhibition of tumor growth both in cancer and drug-resistant cancer xenograft models.


Asunto(s)
Apoptosis , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Lisosomas/metabolismo , Caspasas/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Línea Celular Tumoral
3.
Small ; 19(22): e2300218, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36864579

RESUMEN

Metal-organic framework (MOF) nanoparticles have recently emerged as a promising vehicle for drug delivery with high porosity and feasibility. However, employing a MOF-based drug delivery system remains a challenge due to the difficulty in controlling interfaces of particles in a biological environment. In this paper, protein corona-blocked Zr6 -based MOF (PCN-224) nanoparticles are presented for targeted cancer therapy with high efficiency. The unmodified PCN-224 surface is precoated with glutathione transferase (GST)-fused targetable affibody (GST-Afb) proteins via simple mixing conjugations instead of chemical modifications that can induce the impairment of proteins. GST-Afb proteins are shown to stably protect the surface of PCN-224 particles in a specific orientation with GST adsorbed onto the porous surface and the GST-linked Afb posed outward, minimizing the unwanted interfacial interactions of particles with external biological proteins. The Afb-directed cell-specific targeting ability of particles and consequent induction of cell death is demonstrated both in vitro and in vivo by using two kinds of Afb, which targets the surface membrane receptor, human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR). This study provides insight into the way of regulating the protein-adhesive surface of MOF nanoparticles and designing a more effective MOF-hosted targeted delivery system.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Humanos , Estructuras Metalorgánicas/metabolismo , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Proteínas de la Membrana
4.
Small ; 19(1): e2204336, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36403243

RESUMEN

This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN), NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2 GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2 GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h-1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2 GCN significantly decreases the activation energy barrier for PO ring-opening from 50-60 to 4.903 kcal mol-1 . Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h-1 of CO2 with PC production of 10.2 ton h-1 . Techno-economic assessment profit from Mo2 GCN is estimated to be 60.39 million USD year-1 at a catalyst loss rate of 0.01 wt% h-1 .

5.
Small ; 19(23): e2207511, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36916693

RESUMEN

The authors report a strategic approach to achieve metallic properties from semiconducting CuFeS colloidal nanocrystal (NC) solids through cation exchange method. An unprecedentedly high electrical conductivity is realized by the efficient generation of charge carriers onto a semiconducting CuS NC template via minimal Fe exchange. An electrical conductivity exceeding 10 500 S cm-1 (13 400 S cm-1 at 2 K) and a sheet resistance of 17 Ω/sq at room temperature, which are among the highest values for solution-processable semiconducting NCs, are achieved successfully from bornite-phase CuFeS NC films possessing 10% Fe atom. The temperature dependence of the corresponding films exhibits pure metallic characteristics. Highly conducting NCs are demonstrated for a thermoelectric layer exhibiting a high power factor over 1.2 mW m-1 K-2 at room temperature, electrical wires for switching on light emitting diods (LEDs), and source-drain electrodes for p- and n-type organic field-effect transistors. Ambient stability, eco-friendly composition, and solution-processability further validate their sustainable and practical applicability. The present study provides a simple but very effective method for significantly increasing charge carrier concentrations in semiconducting colloidal NCs to achieve metallic properties, which is applicable to various optoelectronic devices.

6.
Small ; 19(17): e2206668, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36703517

RESUMEN

Low-dimensional Cu(I)-based metal halide materials are gaining attention due to their low toxicity, high stability and unique luminescence mechanism, which is mediated by self-trapped excitons (STEs). Among them, Cs5 Cu3 Cl6 I2 , which emits blue light, is a promising candidate for applications as a next-generation blue-emitting material. In this article, an optimized colloidal process to synthesize uniform Cs5 Cu3 Cl6 I2 nanocrystals (NCs) with a superior quantum yield (QY) is proposed. In addition, precise control of the synthesis parameters, enabling anisotropic growth and emission wavelength shifting is demonstrated. The synthesized Cs5 Cu3 Cl6 I2 NCs have an excellent photoluminescence (PL) retention rate, even at high temperature, and exhibit high stability over multiple heating-cooling cycles under ambient conditions. Moreover, under 850-nm femtosecond laser irradiation, the NCs exhibit three-photon absorption (3PA)-induced PL, highlighting the possibility of utilizing their nonlinear optical properties. Such thermally stable and highly luminescent Cs5 Cu3 Cl6 I2 NCs with nonlinear optical properties overcome the limitations of conventional blue-emitting nanomaterials. These findings provide insights into the mechanism of the colloidal synthesis of Cs5 Cu3 Cl6 I2 NCs and a foundation for further research.

7.
Phys Chem Chem Phys ; 25(5): 3912-3919, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648068

RESUMEN

Tunable photoluminescence has been observed in hexagonal boron nitride quantum dots (BNQDs), but the underlying luminescence mechanism remains elusive. In this study, we examine excited-state properties of several functionalized BNQDs models using density functional theory (DFT), time-dependent DFT, and multistate complete active space second-order perturbation theory (MS-CASPT2) methods. Unlike reported graphene quantum dots, photoluminescence of BNQDs is not affected by their sizes (<2.5 nm). Instead, the embedded single sp3 carbon atom connecting different functional groups can tune emission colors of BNQDs, whose emission wavelength cover full range of visible light and even extend toward near-infrared region. Further analysis reveals that both exciton self-trapping and electron-hole separation decrease HOMO-LUMO energy gaps, leading to large Stokes shifts. Moreover, uneven and even hybridizations induce blue- and red-shifted emission spectra. These findings provide novel insights into full-spectrum emission of BNQDs modified with functional groups.

8.
Angew Chem Int Ed Engl ; 62(12): e202217416, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36545845

RESUMEN

Covalent organic frameworks have recently shown high potential for photocatalytic hydrogen production. However, their structure-property-activity relationship has not been sufficiently explored to identify a research direction for structural design. Herein, we report the design and synthesis of four benzotrithiophene (BTT)-based covalent organic frameworks (COFs) with different conjugations of building units, and their photocatalytic activity for hydrogen production. All four BTT-COFs had slipped parallel stacking patterns with high crystallinity and specific surface areas. The change in the degree of conjugation was found to rationally tune the rate of photocatalytic hydrogen evolution. Based on the experimental and calculation results, the tunable photocatalytic performance could be mainly attributed to the electron affinity and charge trapping of the electron accepting units. This study provides important insights for designing covalent organic frameworks for efficient photocatalysts.

9.
J Am Chem Soc ; 144(14): 6261-6269, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35297615

RESUMEN

The remarkable underwater adhesion of mussel foot proteins has long been an inspiration in the design of peptidomimetic materials. Although the synergistic wet adhesion of catechol and lysine has been recently highlighted, the critical role of the polymeric backbone has remained largely underexplored. Here, we present a peptidomimetic approach using poly(ethylene glycol) (PEG) as a platform to evaluate the synergistic compositional relation between the key amino acid residues (i.e., DOPA and lysine), as well as the role of the polyether backbone in interfacial adhesive interactions. A series of PEG-based peptides (PEGtides) were synthesized using functional epoxide monomers corresponding to catechol and lysine via anionic ring-opening polymerization. Using a surface force apparatus, highly synergistic surface interactions among these PEGtides with respect to the relative compositional ratio were revealed. Furthermore, the critical role of the catechol-amine synergy and diverse hydrogen bonding within the PEGtides in the superior adhesive interactions was verified by molecular dynamics simulations. Our study sheds light on the design of peptidomimetic polymers with reduced complexity within the framework of a polyether backbone.


Asunto(s)
Bivalvos , Peptidomiméticos , Adhesivos/química , Animales , Enlace de Hidrógeno , Lisina/química , Polímeros/química , Proteínas/química
10.
J Am Chem Soc ; 144(43): 19973-19980, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36239442

RESUMEN

Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.

11.
J Am Chem Soc ; 144(12): 5503-5516, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35235326

RESUMEN

Biological nanomachines, including proteins and nucleic acids whose function is activated by conformational changes, are involved in every biological process, in which their dynamic and responsive behaviors are controlled by supramolecular recognition. The development of artificial nanomachines that mimic the biological functions for potential application as therapeutics is emerging; however, it is still limited to the lower hierarchical level of the molecular components. In this work, we report a synthetic machinery nanostructure in which actuatable molecular components are integrated into a hierarchical nanomaterial in response to external stimuli to regulate biological functions. Two nanometers core-sized gold nanoparticles are covered with ligand layers as actuatable components, whose folding/unfolding motional response to the cellular environment enables the direct penetration of the nanoparticles across the cellular membrane to disrupt intracellular organelles. Furthermore, the pH-responsive conformational movements of the molecular components can induce the apoptosis of cancer cells. This strategy based on the mechanical motion of molecular components on a hierarchical nanocluster would be useful to design biomimetic nanotoxins.


Asunto(s)
Fenómenos Biológicos , Nanopartículas del Metal , Nanoestructuras , Membrana Celular , Oro , Nanoestructuras/toxicidad
12.
Nat Mater ; 20(3): 385-394, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398120

RESUMEN

Polymeric materials have been used to realize optical systems that, through periodic variations of their structural or optical properties, interact with light-generating holographic signals. Complex holographic systems can also be dynamically controlled through exposure to external stimuli, yet they usually contain only a single type of holographic mode. Here, we report a conjugated organogel that reversibly displays three modes of holograms in a single architecture. Using dithering mask lithography, we realized two-dimensional patterns with varying cross-linking densities on a conjugated polydiacetylene. In protic solvents, the organogel contracts anisotropically to develop optical and structural heterogeneities along the third dimension, displaying holograms in the form of three-dimensional full parallax signals, both in fluorescence and bright-field microscopy imaging. In aprotic solvents, these heterogeneities diminish as organogels expand, recovering the two-dimensional periodicity to display a third hologram mode based on iridescent structural colours. Our study presents a next-generation hologram manufacturing method for multilevel encryption technologies.

13.
Angew Chem Int Ed Engl ; 61(38): e202207310, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35705507

RESUMEN

Circularly polarized luminescence (CPL) with tunable chirality is currently a challenging issue in the development of supramolecular nanomaterials. We herein report the formation of helical nanoribbons which grow into helical tubes through dynamic helicity inversion. For this, chiral PtII complexes of terpyridine derivatives, namely S-trans-1 and R-trans-1, with respective S- and R-alanine subunits and incorporating trans-double bonds in the alkyl chain were prepared. In DMSO/H2 O (5 : 1 v/v), S-trans-1 initially forms a fibrous self-assembled product, which then undergoes dynamic transformation into helical tubes (left-handed or M-type) through helical ribbons (right-handed or P-type). Interestingly, both helical supramolecular architectures are capable of emitting CPL signals. The metastable helical ribbons show CPL signals (glum =±4.7×10-2 ) at 570 nm. Meanwhile, the nanotubes, which are the thermodynamic products, show intense CPL signals (glum =±5.6×10-2 ) at 610 nm accompanied by helicity inversion. This study provides an efficient way to develop highly dissymmetric CPL nanomaterials by regulating the morphology of metallosupramolecular architectures.

14.
Angew Chem Int Ed Engl ; 61(4): e202113780, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34708501

RESUMEN

Despite its abundance, water is not widely used as a medium for organic reactions. However, under geothermal conditions, water exhibits unique physicochemical properties, such as viscosity and a dielectric constant, and the ionic product become similar to those of common organic solvents. We have synthesized highly crystalline polyimide-based covalent organic frameworks (PICs) under geomimetic hydrothermal conditions. By exploiting triphenylene-2,3,6,7,10,11-hexacarboxylic acid in combination with various aromatic diamines, PICs with various pore dimensions and crystallinities were synthesized. XRD, FT-IR, and DFT calculations revealed that the solubility of the oligomeric intermediates under hydrothermal conditions affected the stacking structures of the crystalline PICs. Furthermore, the synthesized PICs demonstrate promising potential as an anode material in lithium-ion batteries owing to its unique redox-active properties and high surface area.

15.
Nano Lett ; 20(9): 6651-6659, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32809835

RESUMEN

Tailoring the crystal orientation of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has attracted widespread interest because of its effects on the ferroelectric properties required for various electronic devices. In this study, we investigated the epitaxial growth of PVDF-TrFE on a chitin film for developing triboelectric nanogenerators (TENGs). The crystallographic match between the chitin and PVDF-TrFE enables the development of the intended crystal orientation, with the PVDF-TrFE polarization axis aligned perpendicular to the substrate. In addition, the epitaxially grown PVDF-TrFE on chitin not only enhances the performance of the TENG but also increases the stability of the hygroscopic chitin film against water. The corresponding TENG exhibits a significantly higher output current compared to that of a nonepitaxial PVDF-TrFE/chitin film. Furthermore, the triboelectric sensors based on epitaxial PVDF-TrFE/chitin films allow the monitoring of subtle pressures, suggesting that tailoring the crystal orientation of PVDF-TrFE is a promising approach for developing high-performance TENGs.

16.
Angew Chem Int Ed Engl ; 60(31): 17191-17197, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34114283

RESUMEN

Developing new linkage-based covalent organic frameworks (COFs) is one of the major topics in reticular chemistry. Electrically conductive COFs have enabled applications in energy storage and electrochemical catalysis, which are not feasible using insulating COFs. Despite significant advances, the construction of chemically stable conductive COFs by the formation of new linkages remains relatively unexplored and challenging. Here we report the solvent- and catalyst-free synthesis of a two-dimensional aza-bridged bis(phenanthroline) macrocycle-linked COF (ABBPM-COF) from the thermally induced poly-condensation of a tri-topic monomer and ammonia gas. The ABBPM-COF structure was elucidated using multiple techniques, including X-ray diffraction analysis combined with structural simulation, revealing its crystalline nature with an ABC stacking mode. Further experiments demonstrated its excellent chemical stability in acid/base solutions. Electrical-conductivity measurements showed that the insulating ABBPM-COF becomes a semiconducting material after exposure to iodine vapor.

17.
J Am Chem Soc ; 142(43): 18346-18354, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33021791

RESUMEN

We report the synthesis and characterization of a two-dimensional (2D) MX2Y2-type (M = metal, X, Y = N, S, O, and X ≠ Y) copper 1,3,5-triamino-2,4,6-benzenetriol metal-organic framework (Cu3(TABTO)2-MOF). The role of oxygen in the synthesis of this MOF was investigated. Copper metal is formed along with the MOF when the synthesis is done in argon as suggested by XRD. When the reaction was exposed to air with vigorous stirring, copper metal was not observed by XRD. However, if there is no stirring, then copper metal is formed, and we learned that this is because oxygen was not allowed to enter the solvent due to the formation of a MOF film at the air/water interface. For the sample synthesized in argon (Cu3(TABTO)2-Ar), an insulating Cu3(TABTO)2-Ar pellet (σ < 10-10 S cm-1) became a metallic conductor with an electrical conductivity of 0.78 S cm-1 at 300 K after exposure to iodine vapor. This work provides further insights into the role of oxygen in the synthesis of redox-active ligand-based MOFs, expands the family of 2D redox-active ligand-based electrically conductive MOFs, and offers more opportunities in sensing, photocatalytic, electronic, and energy-related applications.

18.
Inorg Chem ; 59(21): 15717-15723, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33035048

RESUMEN

We synthesized CsBr nanoplatelets and controlled their size and shape using HBr and tetrabutylammonium bromide (TBAB) as bromine precursors, obtaining hexagonal and rectangular plates, respectively. The phenomena were elucidated by density functional theory calculations, which indicated that the formation of the hexagonal shape was explained by comparing the relaxed surface free energy of oleate on the exposable surfaces of the CsBr plates. As the bromine precursor changed from HBr to TBAB, the formation of the rectangular shape was determined by comparing the surface free energy and attachment free energy between exposable surfaces due to its bulky surfactant tail. In addition, the TEM measurements indicated that the rectangles or hexagonal shapes are aligned precisely regardless of their size. The data mean that the large plates split into smaller plates as the temperature increases so that the nanoplatelets were formed by a top-down method in which a large plate was split by surfactants rather than through a bottom-up method in which a rectangle or a hexagon grew from smaller particles. The facts were explained by the surface chemical thermodynamics model which showed that the surface area (σ) and the crystal size decreased as the temperature increased.

19.
Nano Lett ; 19(9): 5879-5884, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31141382

RESUMEN

Lithium (Li) metal has garnered considerable attention in next-generation battery anodes. However, its environmental vulnerability, along with the electrochemical instability and safety failures, poses a formidable challenge to commercial use. Here, we describe a new class of antioxidative Li reservoir based on interstitial channels of single-walled carbon nanotube (SWCNT) bundles. The Li preferentially confined in the interstitial channels exhibits unusual thermodynamic stability and exceptional capacity even after exposure to harsh environmental conditions, thereby enabling us to propose a new lithiation/delithiation mechanism in carbon nanotubes. To explore practical application of this approach, the Li confined in the SWCNT bundles is electrochemically extracted and subsequently plated on a copper foil. The resulting Li-plated copper foil shows reliable charge/discharge behavior comparable to those of pristine Li foils. Benefiting from the confinement effect of the interstitial channels, the SWCNT bundles hold great promise as an environmentally tolerant, high-capacity Li reservoir.

20.
Angew Chem Int Ed Engl ; 59(18): 7089-7096, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32112494

RESUMEN

Here, we propose an experimental methodology based on femtosecond-resolved fluorescence spectroscopy to measure the hydrogen (H)-bond free energy of water at protein surfaces under isothermal conditions. A demonstration was conducted by installing a non-canonical isostere of tryptophan (7-azatryptophan) at the surface of a coiled-coil protein to exploit the photoinduced proton transfer of its chromophoric moiety, 7-azaindole. The H-bond free energy of this biological water was evaluated by comparing the rates of proton transfer, sensitive to the hydration environment, at the protein surface and in bulk water, and it was found to be higher than that of bulk water by 0.4 kcal mol-1 . The free-energy difference is dominated by the entropic cost in the H-bond network among water molecules at the hydrophilic and charged protein surface. Our study opens a door to accessing the energetics and dynamics of local biological water to give insight into its roles in protein structure and function.


Asunto(s)
Teoría Funcional de la Densidad , Proteínas/metabolismo , Termodinámica , Agua/metabolismo , Enlace de Hidrógeno , Estructura Molecular , Proteínas/química , Protones , Espectrometría de Fluorescencia , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA