Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 621(7978): 355-364, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612510

RESUMEN

The prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date1 and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes2. Ampliconic sequences associated with these inversions show differing mutation rates that are sequence context dependent, and some ampliconic genes exhibit evidence for concerted evolution with the acquisition and purging of lineage-specific pseudogenes. The largest heterochromatic region in the human genome, Yq12, is composed of alternating repeat arrays that show extensive variation in the number, size and distribution, but retain a 1:1 copy-number ratio. Finally, our data suggest that the boundary between the recombining pseudoautosomal region 1 and the non-recombining portions of the X and Y chromosomes lies 500 kb away from the currently established1 boundary. The availability of fully sequence-resolved Y chromosomes from multiple individuals provides a unique opportunity for identifying new associations of traits with specific Y-chromosomal variants and garnering insights into the evolution and function of complex regions of the human genome.


Asunto(s)
Cromosomas Humanos Y , Evolución Molecular , Humanos , Masculino , Cromosomas Humanos Y/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Fenotipo , Eucromatina/genética , Seudogenes , Variación Genética/genética , Cromosomas Humanos X/genética , Regiones Pseudoautosómicas/genética
2.
BMC Cancer ; 21(1): 923, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399705

RESUMEN

BACKGROUND: Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 13-23% of all GC cases and patients with HER2 overexpression exhibit a poor prognosis. Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, is an effective agent to treat HER2-amplified breast cancer but it failed in gastric cancer (GC) clinical trials. However, the molecular mechanism of lapatinib resistance in HER2-amplified GC is not well studied. METHODS: We employed an unbiased, genome-scale screening with pooled CRISPR library on HER2-amplified GC cell lines to identify genes that are associated with resistance to lapatinib. To validate the candidate genes, we applied in vitro and in vivo pharmacological tests to confirm the function of the target genes. RESULTS: We found that loss of function of CSK or PTEN conferred lapatinib resistance in HER2-amplified GC cell lines NCI-N87 and OE19, respectively. Moreover, PI3K and MAPK signaling was significantly increased in CSK or PTEN null cells. Furthermore, in vitro and in vivo pharmacological study has shown that lapatinib resistance by the loss of function of CSK or PTEN, could be overcome by lapatinib combined with the PI3K inhibitor copanlisib and MEK inhibitor trametinib. CONCLUSIONS: Our study suggests that loss-of-function mutations of CSK and PTEN cause lapatinib resistance by re-activating MAPK and PI3K pathways, and further proved these two pathways are druggable targets. Inhibiting the two pathways synergistically are effective to overcome lapatinib resistance in HER2-amplified GC. This study provides insights for understanding the resistant mechanism of HER2 targeted therapy and novel strategies that may ultimately overcome resistance or limited efficacy of lapatinib treatment for subset of HER2 amplified GC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Lapatinib/administración & dosificación , Ratones , Ratones Endogámicos NOD , Ratones SCID , Piridonas/administración & dosificación , Pirimidinas/administración & dosificación , Pirimidinonas/administración & dosificación , Quinazolinas/administración & dosificación , Receptor ErbB-2/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proc Natl Acad Sci U S A ; 112(40): 12492-7, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26401016

RESUMEN

Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Recent high-throughput analyses of genomic alterations revealed several driver genes and altered pathways in GC. However, therapeutic applications from genomic data are limited, largely as a result of the lack of druggable molecular targets and preclinical models for drug selection. To identify new therapeutic targets for GC, we performed array comparative genomic hybridization (aCGH) of DNA from 103 patients with GC for copy number alteration (CNA) analysis, and whole-exome sequencing from 55 GCs from the same patients for mutation profiling. Pathway analysis showed recurrent alterations in the Wnt signaling [APC, CTNNB1, and DLC1 (deleted in liver cancer 1)], ErbB signaling (ERBB2, PIK3CA, and KRAS), and p53 signaling/apoptosis [TP53 and BCL2L1 (BCL2-like 1)] pathways. In 18.4% of GC cases (19/103), amplification of the antiapoptotic gene BCL2L1 was observed, and subsequently a BCL2L1 inhibitor was shown to markedly decrease cell viability in BCL2L1-amplified cell lines and in similarly altered patient-derived GC xenografts, especially when combined with other chemotherapeutic agents. In 10.9% of cases (6/55), mutations in DLC1 were found and were also shown to confer a growth advantage for these cells via activation of Rho-ROCK signaling, rendering these cells more susceptible to a ROCK inhibitor. Taken together, our study implicates BCL2L1 and DLC1 as potential druggable targets for specific subsets of GC cases.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas Activadoras de GTPasa/genética , Estudio de Asociación del Genoma Completo/métodos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Proteínas Supresoras de Tumor/genética , Proteína bcl-X/genética , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Exoma/genética , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Persona de Mediana Edad , Mutación , Interferencia de ARN , Análisis de Secuencia de ADN/métodos , Neoplasias Gástricas/patología , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-24462964

RESUMEN

The industrial application of nanotechnology, particularly using zinc oxide (ZnO), has grown rapidly, including products such as cosmetics, food, rubber, paints, and plastics. However, despite increasing population exposure to ZnO, its potential genotoxicity remains controversial. The biological effects of nanoparticles depend on their physicochemical properties. Preparations with well-defined physico-chemical properties and standardized test methods are required for assessing the genotoxicity of nanoparticles. In this study, we have evaluated the genotoxicity of four kinds of ZnO nanoparticles: 20nm and 70nm size, positively or negatively charged. Four different genotoxicity tests (bacterial mutagenicity assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test, were conducted, following Organization for Economic Cooperation and Development (OECD) test guidelines with good laboratory practice (GLP) procedures. No statistically significant differences from the solvent controls were observed. These results suggest that surface-modified ZnO nanoparticles do not induce genotoxicity in in vitro or in vivo test systems.


Asunto(s)
Daño del ADN , Nanopartículas del Metal/toxicidad , Óxido de Zinc/toxicidad , Animales , Células Cultivadas , Ensayo Cometa/métodos , Cricetinae , Cricetulus , Masculino , Ratones , Ratones Endogámicos ICR , Pruebas de Micronúcleos , Ratas , Ratas Sprague-Dawley
5.
J Breast Cancer ; 26(1): 1-13, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36762784

RESUMEN

Despite the advances in research and treatment of human breast cancer, its incidence rate continues to increase by 0.5% per year, and the discovery of novel therapeutic strategies for specific subtypes of human breast cancer remains challenging. Traditional laboratory mouse models have contributed tremendously to human breast cancer research. However, mice do not develop tumors spontaneously; consequently, genetically engineered mouse models or patient-derived xenograft models are often relied upon for more sophisticated human breast cancer studies. Since human breast cancer develops spontaneously, there is a need for alternative, yet complementary, models that can better recapitulate the features of human breast cancer to better understand the molecular and clinical complexities of the disease in developing new therapeutic strategies. Canine mammary tumors are one such alternative model that share features with human breast cancer, including prevalence rate, subtype classification, treatment, and mutational profiles, all of which are described in this review.

6.
NPJ Genom Med ; 7(1): 63, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302783

RESUMEN

Pancreatic cancer exhibits a characteristic tumor microenvironment (TME) due to enhanced fibrosis and hypoxia and is particularly resistant to conventional chemotherapy. However, the molecular mechanisms underlying TME-associated treatment resistance in pancreatic cancer are not fully understood. Here, we developed an in vitro TME mimic system comprising pancreatic cancer cells, fibroblasts and immune cells, and a stress condition, including hypoxia and gemcitabine. Cells with high viability under stress showed evidence of increased direct cell-to-cell transfer of biomolecules. The resulting derivative cells (CD44high/SLC16A1high) were similar to cancer stem cell-like-cells (CSCs) with enhanced anchorage-independent growth or invasiveness and acquired metabolic reprogramming. Furthermore, CD24 was a determinant for transition between the tumorsphere formation or invasive properties. Pancreatic cancer patients with CD44low/SLC16A1low expression exhibited better prognoses compared to other groups. Our results suggest that crosstalk via direct cell-to-cell transfer of cellular components foster chemotherapy-induced tumor evolution and that targeting of CD44 and MCT1(encoded by SLC16A1) may be useful strategy to prevent recurrence of gemcitabine-exposed pancreatic cancers.

7.
Microbiome ; 10(1): 188, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333752

RESUMEN

BACKGROUND: Comparisons of the gut microbiome of lean and obese humans have revealed that obesity is associated with the gut microbiome plus changes in numerous environmental factors, including high-fat diet (HFD). Here, we report that two species of Bifidobacterium are crucial to controlling metabolic parameters in the Korean population. RESULTS: Based on gut microbial analysis from 99 Korean individuals, we observed the abundance of Bifidobacterium longum and Bifidobacterium bifidum was markedly reduced in individuals with increased visceral adipose tissue (VAT), body mass index (BMI), blood triglyceride (TG), and fatty liver. Bacterial transcriptomic analysis revealed that carbohydrate/nucleoside metabolic processes of Bifidobacterium longum and Bifidobacterium bifidum were associated with protecting against diet-induced obesity. Oral treatment of specific commercial Bifidobacterium longum and Bifidobacterium bifidum enhanced bile acid signaling contributing to potentiate oxidative phosphorylation (OXPHOS) in adipose tissues, leading to reduction of body weight gain and improvement in hepatic steatosis and glucose homeostasis. Bifidobacterium longum or Bifidobacterium bifidum manipulated intestinal sterol biosynthetic processes to protect against diet-induced obesity in germ-free mice. CONCLUSIONS: Our findings support the notion that treatment of carbohydrate/nucleoside metabolic processes-enriched Bifidobacterium longum and Bifidobacterium bifidum would be a novel therapeutic strategy for reprograming the host metabolic homeostasis to protect against metabolic syndromes, including diet-induced obesity. Video Abstract.


Asunto(s)
Bifidobacterium longum , Bifidobacterium , Humanos , Ratones , Animales , Bifidobacterium/metabolismo , Nucleósidos/metabolismo , Nucleósidos/uso terapéutico , Fosforilación Oxidativa , Obesidad/microbiología , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo Blanco/metabolismo
8.
Mol Oncol ; 15(2): 487-502, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188726

RESUMEN

Erlotinib is highly effective in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. However, despite initial favorable responses, most patients rapidly develop resistance to erlotinib soon after the initial treatment. This study aims to identify new genes and pathways associated with erlotinib resistance mechanisms in order to develop novel therapeutic strategies. Here, we induced knockout (KO) mutations in erlotinib-resistant human lung cancer cells (NCI-H820) using a genome-scale CRISPR-Cas9 sgRNA library to screen for genes involved in erlotinib susceptibility. The spectrum of sgRNAs incorporated among erlotinib-treated cells was substantially different to that of the untreated cells. Gene set analyses showed a significant depletion of 'cell cycle process' and 'protein ubiquitination pathway' genes among erlotinib-treated cells. Chemical inhibitors targeting genes in these two pathways, such as nutlin-3 and carfilzomib, increased cancer cell death when combined with erlotinib in both in vitro cell line and in vivo patient-derived xenograft experiments. Therefore, we propose that targeting cell cycle processes or protein ubiquitination pathways are promising treatment strategies for overcoming resistance to EGFR inhibitors in lung cancer.


Asunto(s)
Ciclo Celular , Resistencia a Antineoplásicos , Clorhidrato de Erlotinib/farmacología , Neoplasias Pulmonares , Proteínas de Neoplasias , Ubiquitinación , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Ratones SCID , Proteínas de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
9.
Commun Biol ; 4(1): 231, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608630

RESUMEN

An unbalanced microbial ecosystem on the human skin is closely related to skin diseases and has been associated with inflammation and immune responses. However, little is known about the role of the skin microbiome on skin aging. Here, we report that the Streptococcus species improved the skin structure and barrier function, thereby contributing to anti-aging. Metagenomic analyses showed the abundance of Streptococcus in younger individuals or those having more elastic skin. Particularly, we isolated Streptococcus pneumoniae, Streptococcus infantis, and Streptococcus thermophilus from face of young individuals. Treatment with secretions of S. pneumoniae and S. infantis induced the expression of genes associated with the formation of skin structure and the skin barrier function in human skin cells. The application of culture supernatant including Streptococcal secretions on human skin showed marked improvements on skin phenotypes such as elasticity, hydration, and desquamation. Gene Ontology analysis revealed overlaps in spermidine biosynthetic and glycogen biosynthetic processes. Streptococcus-secreted spermidine contributed to the recovery of skin structure and barrier function through the upregulation of collagen and lipid synthesis in aged cells. Overall, our data suggest the role of skin microbiome into anti-aging and clinical applications.


Asunto(s)
Microbiota , Envejecimiento de la Piel , Piel/microbiología , Espermidina/metabolismo , Streptococcus/metabolismo , Adulto , Colágeno/metabolismo , Disbiosis , Elasticidad , Femenino , Humanos , Lipogénesis , Metagenoma , Fenotipo , Piel/metabolismo , Streptococcus/genética , Streptococcus/crecimiento & desarrollo , Adulto Joven
10.
Nat Microbiol ; 6(3): 277-288, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33432149

RESUMEN

The gut microbiome can influence the development of tumours and the efficacy of cancer therapeutics1-5; however, the multi-omics characteristics of antitumour bacterial strains have not been fully elucidated. In this study, we integrated metagenomics, genomics and transcriptomics of bacteria, and analyses of mouse intestinal transcriptome and serum metabolome data to reveal an additional mechanism by which bacteria determine the efficacy of cancer therapeutics. In gut microbiome analyses of 96 samples from patients with non-small-cell lung cancer, Bifidobacterium bifidum was abundant in patients responsive to therapy. However, when we treated syngeneic mouse tumours with commercial strains of B. bifidum to establish relevance for potential therapeutic uses, only specific B. bifidum strains reduced tumour burden synergistically with PD-1 blockade or oxaliplatin treatment by eliciting an antitumour host immune response. In mice, these strains induced tuning of the immunological background by potentiating the production of interferon-γ, probably through the enhanced biosynthesis of immune-stimulating molecules and metabolites.


Asunto(s)
Bifidobacterium bifidum/fisiología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Probióticos/uso terapéutico , Carga Tumoral/efectos de los fármacos , Animales , Bifidobacterium bifidum/clasificación , Bifidobacterium bifidum/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/microbiología , Carcinoma de Pulmón de Células no Pequeñas/patología , Quimioterapia Combinada , Microbioma Gastrointestinal , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/patología , Metaboloma/efectos de los fármacos , Ratones , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Probióticos/administración & dosificación , Especificidad de la Especie , Transcriptoma/efectos de los fármacos , Triptófano/metabolismo
11.
Nat Commun ; 10(1): 1784, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992455

RESUMEN

The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.


Asunto(s)
Genoma Humano/genética , Variación Estructural del Genoma , Genómica/métodos , Haplotipos/genética , Algoritmos , Mapeo Cromosómico/métodos , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación INDEL , Secuenciación Completa del Genoma/métodos
13.
Mol Cells ; 39(2): 77-86, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26831452

RESUMEN

Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients' tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine.


Asunto(s)
Supervivencia de Injerto , Terapia Molecular Dirigida/métodos , Neoplasias Gástricas/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/farmacología , Biomarcadores Farmacológicos/metabolismo , Compuestos de Bifenilo/farmacología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Sinergismo Farmacológico , Humanos , Irinotecán , Ratones , Ratones Desnudos , Ratones SCID , Nitrofenoles/farmacología , Piperazinas/farmacología , Medicina de Precisión , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Sulfonamidas/farmacología , Carga Tumoral/efectos de los fármacos
14.
PLoS One ; 11(11): e0166044, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832168

RESUMEN

INTRODUCTION: Air pollutants are associated with inflammatory diseases such as otitis media (OM). Significantly higher incidence rates of OM are reported in regions with air pollution. Diesel exhaust particles (DEPs) comprise a major class of contaminants among numerous air pollutants, and they are characterized by a carbonic mixture of polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and small amounts of sulfate, nitrate, metals and other trace elements. DEP exposure is a risk factor for inflammatory diseases. Our previous study identified potential biomarkers using gene expression microarray and pathway analyses in an in vitro system. Although in vitro investigations have been conducted to elucidate plausible biomarkers and molecular mechanisms related to DEP exposure, in vivo studies are necessary to identify the exact biological relevance regarding the incidence of OM caused by DEP exposure. In this study, we identified potential molecular biomarkers and pathways triggered by DEP exposure in a rodent model. METHODS: Transcriptomic analysis was employed to identify novel potential biomarkers in the middle ear of DEP-exposed mice. RESULTS: A total of 697 genes were differentially expressed in the DEP-exposed mice; 424 genes were upregulated and 273 downregulated. In addition, signaling pathways among the differentially expressed genes mediated by DEP exposure were predicted. Several key molecular biomarkers were identified including cholinergic receptor muscarinic 1 (CHRM1), erythropoietin (EPO), son of sevenless homolog 1 (SOS1), estrogen receptor 1 (ESR1), cluster of differentiation 4 (CD4) and interferon alpha-1 (IFNA1). CONCLUSIONS: Our results shed light on the related cell processes and gene signaling pathways affected by DEP exposure. The identified biomarkers might be potential candidates for determining early diagnoses and effective treatment strategies for DEP-mediated disorders.


Asunto(s)
Oído Medio/patología , Otitis Media/diagnóstico , Otitis Media/etiología , Emisiones de Vehículos/toxicidad , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Oído Medio/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos BALB C , Otitis Media/genética , Otitis Media/metabolismo , Transducción de Señal , Transcriptoma
15.
Clin Exp Otorhinolaryngol ; 8(4): 345-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26622952

RESUMEN

OBJECTIVES: The primary aim of this study is to evaluate the gene expression profile of Asian sand dust (ASD)-treated human middle ear epithelial cell (HMEEC) using microarray analysis. METHODS: The HMEEC was treated with ASD (400 µg/mL) and total RNA was extracted for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction. RESULTS: A total of 1,274 genes were differentially expressed by ASD. Among them, 1,138 genes were 2 folds up-regulated, whereas 136 genes were 2 folds down-regulated. Up-regulated genes were mainly involved in cellular processes, including apoptosis, cell differentiation, and cell proliferation. Down-regulated genes affected cellular processes, including apoptosis, cell cycle, cell differentiation, and cell proliferation. The 10 genes including ADM, CCL5, EDN1, EGR1, FOS, GHRL, JUN, SOCS3, TNF, and TNFSF10 were identified as main modulators in up-regulated genes. A total of 11 genes including CSF3, DKK1, FOSL1, FST, TERT, MMP13, PTHLH, SPRY2, TGFBR2, THBS1, and TIMP1 acted as main components of pathway associated with 2-fold down regulated genes. CONCLUSION: We identified the differentially expressed genes in ASD-treated HMEEC. Our work indicates that air pollutant like ASD, may play an important role in the pathogenesis of otitis media.

16.
Int J Nanomedicine ; 9 Suppl 2: 271-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25565845

RESUMEN

Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed.


Asunto(s)
Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Óxido de Zinc/toxicidad , Animales , Artefactos , Biomarcadores/análisis , Línea Celular , Daño del ADN/efectos de los fármacos , Humanos , Ratones , Pruebas de Mutagenicidad
17.
Int J Nanomedicine ; 9 Suppl 2: 173-81, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25565835

RESUMEN

BACKGROUND: Silica dioxide (SiO2) has been used in various industrial products, including paints and coatings, plastics, synthetic rubbers, and adhesives. Several studies have investigated the genotoxic effects of SiO2; however, the results remain controversial due to variations in the evaluation methods applied in determining its physicochemical properties. Thus, well characterized chemicals and standardized methods are needed for better assessment of the genotoxicity of nanoparticles. METHODS: The genotoxicity of SiO2 was evaluated using two types of well characterized SiO2, ie, 20 nm (-) charge (SiO (EN20(-))2) and 100 nm (-) charge (SiO (EN100(-))2). Four end point genotoxicity tests, ie, the bacterial mutation assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test, were conducted following the test guidelines of the Organization for Economic Cooperation and Development (OECD) with application of Good Laboratory Practice. RESULTS: No statistically significant differences were found in the bacterial mutation assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test when tested for induction of genotoxicity in both two types of SiO2 nanoparticles. CONCLUSION: These results suggest that SiO2 nanoparticles, in particular SiO2 (EN20(-)) and SiO2 (EN100(-)), are not genotoxic in both in vitro and in vivo systems under OECD guidelines. Further, the results were generated in accordance with OECD test guidelines, and Good Laboratory Practice application; it can be accepted as reliable information regarding SiO2-induced genotoxicity.


Asunto(s)
Pruebas de Mutagenicidad , Nanopartículas , Dióxido de Silicio , Animales , Bacterias/efectos de los fármacos , Línea Celular , Cricetinae , Daño del ADN/efectos de los fármacos , Nanopartículas/análisis , Nanopartículas/toxicidad , Ratas , Ratas Sprague-Dawley , Dióxido de Silicio/análisis , Dióxido de Silicio/toxicidad
18.
Int J Pediatr Otorhinolaryngol ; 77(10): 1760-4, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24012219

RESUMEN

OBJECTIVES: The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). METHODS: The HMEEC was treated with PM (300 µg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. RESULTS: A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. CONCLUSIONS: We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , MicroARNs/genética , Análisis por Micromatrices , Otitis Media/genética , Otitis Media/patología , Material Particulado/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo , Oído Medio/citología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Humanos , Otitis Media/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , República de Corea , Sensibilidad y Especificidad , Transducción de Señal/genética , Regulación hacia Arriba
19.
J Cancer Prev ; 18(4): 277-88, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25337557

RESUMEN

Genotoxic events have been known as crucial step in the initiation of cancer. To assess the risk of cancer, genotoxicity assays, including comet, micronucleus (MN), chromosomal aberration, bacterial reverse, and sister chromatid exchange assay, can be performed. Compared with in vitro genotoxicity assay, in vivo genotoxicity assay has been used to verify in vitro assay result and definitely provide biological significance for certain organs or cell types. The comet assay can detect DNA strand breaks as markers of genotoxicity. Methods of the in vivo comet assay have been established by Japanese Center for the Validation of Alternative Methods (JaCVAM) validation studies depending on tissue and sample types. The MN can be initiated by segregation error and lagging acentric chromosome fragment. Methods of the in vivo MN assay have been established by Organization for Economic Co-operation and Development (OECD) test guidelines and many studies. Combining the in vivo comet and MN assay has been regarded as useful methodology for evaluating genetic damage, and it has been used in the assessment of potential carcinogenicity by complementarily presenting two distinct endpoints of the in vivo genotoxicity individual test. Few studies have investigated the quantitative relation between in vivo genotoxicity results and carcinogenicity. Extensive studies emphasizes that positive correlation is detectable. This review summarizes the results of the in vivo comet and MN assays that have investigated the genotoxicity of carcinogens as classified by the International Agency for Research on Cancer (IARC) carcinogenicity database. As a result, these genotoxicity data may provide meaningful information for the assessment of potential carcinogenicity and for implementation in the prevention of cancer.

20.
Oncol Rep ; 30(3): 1185-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23828170

RESUMEN

Cadmium and nickel have been classified as carcinogenic to humans by the World Health Organization's International Agency for Research on Cancer. Given their prevalence in the environment, the fact that cadmium and nickel may cause diseases including cancer even at low doses is a cause for concern. However, the exact mechanisms underlying the toxicological effects induced by low-dose exposure to cadmium and nickel remain to be elucidated. Furthermore, it has recently been recognized that integrative analysis of DNA, mRNA and proteins is required to discover biomarkers and signaling networks relevant to human toxicant exposure. In the present study, we examined the deleterious effects of chronic low-dose exposure of either cadmium or nickel on global profiling of DNA copy number variation, mRNA and proteins. Array comparative genomic hybridization, gene expression microarray and functional proteomics were conducted, and a bioinformatics tool, which predicted signaling pathways, was applied to integrate data for each heavy metal separately and together. We found distinctive signaling networks associated with subchronic low-dose exposure to cadmium and nickel, and identified pathways common to both. ACTB, HSP90AA1, HSPA5 and HSPA8, which are key mediators of pathways related to apoptosis, proliferation and neoplastic processes, were key mediators of the same pathways in low-dose nickel and cadmium exposure in particular. CASP-associated signaling pathways involving CASP3, CASP7 and CASP9 were observed in cadmium-exposed cells. We found that HSP90AA1, one of the main modulators, interacted with HIF1A, AR and BCL2 in nickel-exposed cells. Interestingly, we found that HSP90AA1 was involved in the BCL2-associated apoptotic pathway in the nickel-only data, whereas this gene interacted with several genes functioning in CASP-associated apoptotic signaling in the cadmium-only data. Additionally, JUN and FASN were main modulators in nickel-responsive signaling pathways. Our results provide valuable biomarkers and distinctive signaling networks that responded to subchronic low-dose exposure to cadmium and nickel.


Asunto(s)
Biomarcadores de Tumor/genética , Cadmio/efectos adversos , Carcinógenos/farmacología , Neoplasias del Colon/genética , Níquel/efectos adversos , Mapas de Interacción de Proteínas/efectos de los fármacos , Toxicogenética/métodos , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/metabolismo , Hibridación Genómica Comparativa , Relación Dosis-Respuesta a Droga , Chaperón BiP del Retículo Endoplásmico , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteómica/métodos , Transducción de Señal/efectos de los fármacos , Oligoelementos/efectos adversos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA