Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(18): 3820-3832.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34233158

RESUMEN

A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Hígado Graso/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos , Hígado Graso/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Lipogénesis , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Triglicéridos/metabolismo
2.
Inflamm Res ; 73(10): 1671-1685, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079978

RESUMEN

OBJECTIVE AND DESIGN: This observational study investigated the regulatory mechanism of Pim-1 in inflammatory signaling pathways. MATERIALS: THP-1, RAW 264.7, BV2, and Jurkat human T cell lines were used. TREATMENT: None. METHODS: Lipopolysaccharide (LPS) was used to induce inflammation, followed by PIM1 knockdown. Western blot, immunoprecipitation, immunofluorescence, and RT-PCR assays were used to assess the effect of PIM1 knockdown on LPS-induced inflammation. RESULTS: PIM1 knockdown in macrophage-like THP-1 cells suppressed LPS-induced upregulation of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B p65 (NF-κB p65). It also suppressed upregulation of inhibitor of NF-κB kinase α/ß and enhanced the nuclear translocation of NF-κB p65. Moreover, it inhibited the upregulation of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and cleavage of caspase-1 induced by co-treatment of LPS with adenosine triphosphate. Additionally, p-transforming growth factor-ß-activated kinase 1 (TAK1) interacted with Pim-1. All three members of Pim kinases (Pim-1, Pim-2, and Pim-3) were required for LPS-mediated inflammation in macrophages; however, unlike Pim-1 and Pim-3, Pim-2 functioned as a negative regulator of T cell activity. CONCLUSIONS: Pim-1 interacts with TAK1 in LPS-induced inflammatory responses and is involved in MAPK/NF-κB/NLRP3 signaling pathways. Additionally, considering the negative regulatory role of Pim-2 in T cells, further in-depth studies on their respective functions are needed.


Asunto(s)
Inflamación , Lipopolisacáridos , Proteínas Proto-Oncogénicas c-pim-1 , Transducción de Señal , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/genética , Humanos , Lipopolisacáridos/farmacología , Animales , Ratones , Inflamación/metabolismo , Citocinas/metabolismo , Células Jurkat , Células RAW 264.7 , FN-kappa B/metabolismo , Células THP-1 , Línea Celular , Macrófagos/metabolismo , Macrófagos/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética
3.
Inflamm Res ; 73(8): 1371-1391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879731

RESUMEN

Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder characterized by joint destruction due to synovial hypertrophy and the infiltration of inflammatory cells. Despite substantial progress in RA treatment, challenges persist, including suboptimal treatment responses and adverse effects associated with current therapies. This study investigates the anti-rheumatic capabilities of the newly identified multi-protein kinase inhibitor, KMU-11342, aiming to develop innovative agents targeting RA. In this study, we synthesized the novel multi-protein kinase inhibitor KMU-11342, based on indolin-2-one. We assessed its cardiac electrophysiological safety using the Langendorff system in rat hearts and evaluated its toxicity in zebrafish in vivo. Additionally, we examined the anti-rheumatic effects of KMU-11342 on human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), THP-1 cells, and osteoclastogenesis in RAW264.7 cells. KMU-11342 demonstrated the ability to inhibit LPS-induced chemokine inhibition and the upregulation of pro-inflammatory cytokines, cyclooxygenase-2, inducible nitric oxide synthase, p-IKKα/ß, p-NF-κB p65, and the nuclear translocation of NF-κB p65 in RA-FLS. It effectively suppressed the upregulation of NLR family pyrin domain containing 3 (NLRP3) and caspase-1 cleavage. Furthermore, KMU-11342 hindered the activation of osteoclast differentiation factors such as RANKL-induced TRAP, cathepsin K, NFATc-1, and c-Fos in RAW264.7 cells. KMU-11342 mitigates LPS-mediated inflammatory responses in THP-1 cells by inhibiting the activation of NLRP3 inflammasome. Notably, KMU-11342 exhibited minimal cytotoxicity in vivo and electrophysiological cardiotoxicity ex vivo. Consequently, KMU-11342 holds promise for development as a therapeutic agent in RA treatment.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Sinoviocitos , Pez Cebra , Animales , Humanos , Ratones , Artritis Reumatoide/tratamiento farmacológico , Células RAW 264.7 , Sinoviocitos/efectos de los fármacos , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Ratas , Masculino , Citocinas/metabolismo , Células THP-1 , Indoles/farmacología , Indoles/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratas Sprague-Dawley
4.
Ecotoxicol Environ Saf ; 269: 115820, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103469

RESUMEN

Perfluorooctanesulfonate (PFOS) is a ubiquitous environmental pollutant associated with increasing health concerns and environmental hazards. Toxicological analyses of PFOS exposure are hampered by large interspecies variations and limited studies on the mechanistic details of PFOS-induced toxicity. We investigated the effects of PFOS exposure on Xenopus laevis embryos based on the reported developmental effects in zebrafish. X. laevis was selected to further our understanding of interspecies variation in response to PFOS, and we built upon previous studies by including transcriptomics and an assessment of ciliogenic effects. Midblastula-stage X. laevis embryos were exposed to PFOS using the frog embryo teratogenesis assay Xenopus (FETAX). Results showed teratogenic effects of PFOS in a time- and dose-dependent manner. The morphological abnormalities of skeleton deformities, a small head, and a miscoiled gut were associated with changes in gene expression evidenced by whole-mount in situ hybridization and transcriptomics. The transcriptomic profile of PFOS-exposed embryos indicated the perturbation in the expression of genes associated with cell death, and downregulation in adenosine triphosphate (ATP) biosynthesis. Moreover, we observed the effects of PFOS exposure on cilia development as a reduction in the number of multiciliated cells and changes in the directionality and velocity of the cilia-driven flow. Collectively, these data broaden the molecular understanding of PFOS-induced developmental effects, whereby ciliary dysfunction and disrupted ATP synthesis are implicated as the probable modes of action of embryotoxicity. Furthermore, our findings present a new challenge to understand the links between PFOS-induced developmental toxicity and vital biological processes.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Perfilación de la Expresión Génica , Pez Cebra , Animales , Xenopus laevis/genética , Adenosina Trifosfato , Embrión no Mamífero , Teratógenos/toxicidad
5.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891932

RESUMEN

4-O-Methyl-ascochlorin (MAC), a derivative of the prenyl-phenol antibiotic ascochlorin extracted from the fungus Ascochyta viciae, shows anticarcinogenic effects on various cancer cells. 5-Fluorouracil (5-FU) is used to treat colorectal cancer (CRC); however, its efficacy must be enhanced. In this study, we investigated the molecular mechanisms by which MAC acts synergistically with 5-FU to inhibit cell proliferation and induce apoptosis in CRC cells. MAC enhanced the cytotoxic effects of 5-FU by suppressing the Akt/mTOR/p70S6K and Wnt/ß-catenin signaling pathways. It also reduced the viability of 5-FU-resistant (5-FU-R) cells. Furthermore, expression of anti-apoptosis-related proteins and cancer stem-like cell (CSC) markers by 5-FU-R cells decreased in response to MAC. Similar to MAC, the knockdown of CTNNB1 induced apoptosis and reduced expression of mRNA encoding CRC markers in 5-FU-R cells. In summary, these results suggest that MAC and other ß-catenin modulators may be useful in overcoming the 5-FU resistance of CRC cells.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Sinergismo Farmacológico , Fluorouracilo , Vía de Señalización Wnt , beta Catenina , Humanos , Fluorouracilo/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Vía de Señalización Wnt/efectos de los fármacos , Apoptosis/efectos de los fármacos , beta Catenina/metabolismo , beta Catenina/genética , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
6.
Cell Biol Toxicol ; 39(1): 183-199, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34523043

RESUMEN

The autophagy-mediated lysosomal pathway plays an important role in conferring stress tolerance to tumor cells during cellular stress such as increased metabolic demands. Thus, targeted disruption of this function and inducing lysosomal cell death have been proved to be a useful cancer therapeutic approach. In this study, we reported that octyl syringate (OS), a novel phenolic derivate, was preferentially cytotoxic to various cancer cells but was significantly less cytotoxic to non-transformed cells. Treatment with OS resulted in non-apoptotic cell death in a caspase-independent manner. Notably, OS not only enhanced accumulation of autophagic substrates, including lapidated LC3 and sequestosome-1, but also inhibited their degradation via an autophagic flux. In addition, OS destabilized the lysosomal function, followed by the intracellular accumulation of the non-digestive autophagic substrates such as bovine serum albumin and stress granules. Furthermore, OS triggered the release of lysosomal enzymes into the cytoplasm that contributed to OS-induced non-apoptotic cell death. Finally, we demonstrated that OS was well tolerated and reduced tumor growth in mouse xenograft models. Taken together, our study identifies OS as a novel anticancer agent that induces lysosomal destabilization and subsequently inhibits autophagic flux and further supports development of OS as a lysosome-targeting compound in cancer therapy. • Octyl syringate, a phenolic derivate, is preferentially cytotoxic to various cancer cells. • Octyl syringate destabilizes the lysosomal function. • Octyl syringate blocks the autophagic flux. • Octyl syringate is a potential candidate compound for cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Ratones , Animales , Humanos , Apoptosis , Antineoplásicos/farmacología , Muerte Celular , Autofagia , Lisosomas/metabolismo , Neoplasias/metabolismo
7.
Nucleic Acids Res ; 49(10): 5760-5778, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34037780

RESUMEN

Alternative pre-mRNA splicing is a critical step to generate multiple transcripts, thereby dramatically enlarging the proteomic diversity. Thus, a common feature of most alternative splicing factor knockout models is lethality. However, little is known about lineage-specific alternative splicing regulators in a physiological setting. Here, we report that NSrp70 is selectively expressed in developing thymocytes, highest at the double-positive (DP) stage. Global splicing and transcriptional profiling revealed that NSrp70 regulates the cell cycle and survival of thymocytes by controlling the alternative processing of various RNA splicing factors, including the oncogenic splicing factor SRSF1. A conditional-knockout of Nsrp1 (NSrp70-cKO) using CD4Cre developed severe defects in T cell maturation to single-positive thymocytes, due to insufficient T cell receptor (TCR) signaling and uncontrolled cell growth and death. Mice displayed severe peripheral lymphopenia and could not optimally control tumor growth. This study establishes a model to address the function of lymphoid-lineage-specific alternative splicing factor NSrp70 in a thymic T cell developmental pathway.


Asunto(s)
Empalme Alternativo/genética , Carcinogénesis/metabolismo , Desarrollo Embrionario/genética , Hematopoyesis/genética , Melanoma/metabolismo , Timocitos/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Apoptosis/genética , Carcinogénesis/genética , Proliferación Celular/genética , Genómica , Células HEK293 , Humanos , Lectinas Tipo C/metabolismo , Linfopenia/genética , Linfopenia/metabolismo , Melanoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Antígenos de Linfocitos T/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Timo/embriología , Timo/metabolismo
8.
Environ Toxicol ; 38(1): 216-224, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36218123

RESUMEN

Pentachloronitrobenzene (PCNB) is an organochlorine fungicide commonly used to treat seeds against seedling infections and controlling snow mold on golf courses. PCNB has been demonstrated to be toxic to living organisms, including fish and several terrestrial organisms. However, only phenotypical deformities have been studied, and the effects of PCNB on early embryogenesis, where primary organogenesis occurs, have not been completely studied. In the current study, the developmental toxicity and teratogenicity of PCNB is evaluated by using frog embryo teratogenesis assay Xenopus (FETAX). Our results confirmed the teratogenic potential of PCNB revealing the teratogenic index of 1.29 during early embryogenesis. Morphological studies revealed tiny head, bent axis, reduced inter ocular distance, hyperpigmentation, and reduced total body lengths. Whole mount in situ hybridization and reverse transcriptase polymerase chain reaction were used to identify PCNB teratogenic effects at the gene level. The gene expression analyses revealed that PCNB was embryotoxic to the liver and heart of developing embryos. Additionally, to determine the most sensitive developmental stages to PCNB, embryos were exposed to the compound at various developmental stages, demonstrating that the most sensitive developmental stage to PCNB is primary organogenesis. Taken together, we infer that PCNB's teratogenic potential affects not just the phenotype of developing embryos but also the associated genes and involving the oxidative stress as a possible mechanism of toxicity, posing a hazard to normal embryonic growth. However, the mechanisms of teratogenesis require additional extensive investigation to be defined completely.


Asunto(s)
Teratogénesis , Animales , Xenopus laevis/genética , Embrión no Mamífero , Teratógenos/toxicidad , Desarrollo Embrionario/genética , Expresión Génica
9.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675208

RESUMEN

Ubiquitination, one of many post-translational modifications, causes proteasome-mediated protein degradation by attaching ubiquitin to target proteins. Multiple deubiquitinases inhibit the ubiquitination pathway by removing the ubiquitin chain from protein, thus contributing to the stabilization of substrates. USP41 contributes to invasion, apoptosis and drug resistance in breast and lung cancer cells. However, the detailed mechanism and role of USP41 in breast cancer have not been elucidated. USP41 was overexpressed and showed poor prognosis according to the aggressive phenotype of breast cancer cells. Knockdown of USP41 inhibited migration and growth of breast cancer cells, whereas overexpression of USP41 increased cell growth and migration. In addition, depletion of USP41 downregulated Snail protein expression, an epithelial-mesenchymal transition marker, but not mRNA expression. Furthermore, USP41 interacted with and inhibited ubiquitination of Snail, resulting in the increase in Snail stabilization. Therefore, these data demonstrated that USP41 increases migration of breast cancer cells through Snail stabilization.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Transición Epitelial-Mesenquimal/genética , Ubiquitinación , Ubiquitina/metabolismo , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular/genética
10.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511599

RESUMEN

Tubeimoside-1 (TBMS-1), a traditional Chinese medicinal herb, is commonly used as an anti-cancer agent. In this study, we aimed to investigate its effect on the sensitization of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Our results revealed that even though monotherapy using TBMS-1 or TRAIL at sublethal concentrations did not affect cancer cell death, combination therapy using TBMS-1 and TRAIL increased apoptotic cell death. Mechanistically, TBMS-1 destabilized c-FLIP expression by downregulating STAMBPL1, a deubiquitinase (DUB). Specifically, when STAMBPL1 and c-FLIP bound together, STAMBPL1 deubiquitylated c-FLIP. Moreover, STAMBPL1 knockdown markedly increased sensitivity to TRAIL by destabilizing c-FLIP. These findings were further confirmed in vivo using a xenograft model based on the observation that combined treatment with TBMS-1 and TRAIL decreased tumor volume and downregulated STAMBPL1 and c-FLIP expression levels. Overall, our study revealed that STAMBPL1 is essential for c-FLIP stabilization, and that STAMBPL1 depletion enhances TRAIL-mediated apoptosis via c-FLIP downregulation.


Asunto(s)
Apoptosis , Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Ligandos , Péptido Hidrolasas/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales
11.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37628997

RESUMEN

Ubiquitin-specific protease 2 (USP2) is a deubiquitinase belonging to the USPs subfamily. USP2 has been known to display various biological effects including tumorigenesis and inflammation. Therefore, we aimed to examine the sensitization effect of USP2 in TRAIL-mediated apoptosis. The pharmacological inhibitor (ML364) and siRNA targeting USP2 enhanced TNF-related apoptosis-inducing ligand (TRAIL)-induced cancer cell death, but not normal cells. Mechanistically, USP2 interacted with survivin, and ML364 degraded survivin protein expression by increasing the ubiquitination of survivin. Overexpression of survivin or USP2 significantly prevented apoptosis through cotreatment with ML364 and TRAIL, whereas a knockdown of USP2 increased sensitivity to TRAIL. Taken together, our data suggested that ML364 ubiquitylates and degrades survivin, thereby increasing the reactivity to TRAIL-mediated apoptosis in cancer cells.


Asunto(s)
Neoplasias , Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Regulación hacia Abajo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Survivin/genética , Muerte Celular , Neoplasias/genética , Ubiquitina Tiolesterasa/genética
12.
Biochem Biophys Res Commun ; 637: 144-152, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36399800

RESUMEN

Cancer cells exhibit increased glutamine consumption compared to normal cells, supporting cell survival and proliferation. Glutamine is converted to α-ketoglutarate (αKG), which then enters the tricarboxylic acid cycle to generate ATP. Recently, therapeutic modulation of glutamine metabolism has become an attractive metabolic anti-cancer strategy. However, how synergistic combination therapy is required to overcome glutamine metabolism drug resistance remains elusive. To address this issue, we first investigated the role of αKG in regulating gene expression in several cancer cell lines. Using RNA-seq analysis and histone modification screening, we demonstrated that αKG reduced the expression of the immediate early gene (IEG) in cancer cells in an H3K27 acetylation-dependent manner. Conversely, glutaminase (GLS) inhibitors induce IEG expression in cancer cells. Furthermore, we showed that siRNA knockdown of orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) induces IEG expression. Notably, the NR4A1 agonist cytosporone B sensitizes GLS inhibitor resistance to cancer cell death. Together, these findings indicate that therapeutic targeting of IEG dysregulation by αKG can be a potentially effective anti-cancer therapeutic strategy for glutamine metabolism inhibitors.


Asunto(s)
Genes Inmediatos-Precoces , Neoplasias , Ácidos Cetoglutáricos , Glutamina , Ciclo del Ácido Cítrico , Terapia Combinada , Neoplasias/tratamiento farmacológico , Neoplasias/genética
13.
J Pineal Res ; 72(1): e12781, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826170

RESUMEN

Melatonin, secreted by the pineal gland, regulates the circadian rhythms and also plays an oncostatic role in cancer cells. Previously, we showed that melatonin induces the expression of Bim, a pro-apoptotic Bcl-2 protein, at both the transcriptional and post-translational levels. In the present study, we investigated the molecular mechanisms underlying the melatonin-mediated Bim upregulation through post-translational regulation. We found that ovarian tumor domain-containing protein 1 (OTUD1), a deubiquitinase belonging to the OTU protein family, is upregulated by melatonin at the mRNA and protein levels. OTUD1 knockdown inhibited melatonin-induced Bim upregulation and apoptosis in cancer cells. OTUD1 directly interacted with Bim and inhibited its ubiquitination. Melatonin-induced OTUD1 upregulation caused deubiquitination at the lysine 3 residue of Bim, resulting in its stabilization. In addition, melatonin-induced activation of Sp1 was found to be involved in OTUD1 upregulation at the transcriptional level, and pharmacological inhibition and genetic ablation of Sp1 (siRNA) interrupted melatonin-induced OTUD1-mediated Bim upregulation. Furthermore, melatonin reduced tumor growth and induced upregulation of OTUD1 and Bim in a mouse xenograft model. Notably, Bim expression levels correlated with OTUD1 levels in patients with renal clear cell carcinoma. Thus, our results demonstrated that melatonin induces apoptosis by stabilizing Bim via Sp1-mediated OTUD1 upregulation.


Asunto(s)
Melatonina , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2/genética , Línea Celular Tumoral , Humanos , Melatonina/farmacología , Ratones , Factor de Transcripción Sp1/genética , Activación Transcripcional , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Regulación hacia Arriba
14.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499465

RESUMEN

4-O-methylascochlorin (MAC) is a 4-fourth carbon-substituted derivative of ascochlorin, a compound extracted from a phytopathogenic fungus Ascochyta viciae. MAC induces apoptosis and autophagy in various cancer cells, but the effects of MAC on apoptosis and autophagy in cervical cancer cells, as well as how the interaction between apoptosis and autophagy mediates the cellular anticancer effects are not known. Here, we investigated that MAC induced apoptotic cell death of cervical cancer cells without regulating the cell cycle and promoted autophagy by inhibiting the phosphorylation of serine-threonine kinase B (Akt), mammalian target of rapamycin (mTOR), and 70-kDa ribosomal protein S6 kinase (p70S6K). Additional investigations suggested that Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP-3), but not Hypoxia-inducible factor 1 alpha (HIF-1α), is a key regulator of MAC-induced apoptosis and autophagy. BNIP-3 siRNA suppressed MAC-induced increases in cleaved- poly (ADP-ribose) polymerase (PARP) and LC3II expression. The pan-caspase inhibitor Z-VAD-FMK suppressed MAC-induced cell death and enhanced MAC-induced autophagy. The autophagy inhibitor chloroquine (CQ) enhanced MAC-mediated cell death by increasing BNIP-3 expression. These results indicate that MAC induces apoptosis to promote cell death and stimulates autophagy to promote cell survival by increasing BNIP-3 expression. This study also showed that co-treatment of cells with MAC and CQ further enhanced the death of cervical cancer cells.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Línea Celular Tumoral , Autofagia , Apoptosis , Cloroquina/farmacología
15.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576269

RESUMEN

BMI-1, a polycomb ring finger oncogene, is highly expressed in multiple cancer cells and is involved in cancer cell proliferation, invasion, and apoptosis. BMI-1 represents a cancer stemness marker that is associated with the regulation of stem cell self-renewal. In this study, pharmacological inhibition (PTC596) or knockdown (siRNA) of BMI-1 reduced cancer stem-like cells and enhanced cancer cell death. Mechanistically, the inhibition of BMI-1 induced the downregulation of Mcl-1 protein, but not Mcl-1 mRNA. PTC596 downregulated Mcl-1 protein expression at the post-translational level through the proteasome-ubiquitin system. PTC596 and BMI-1 siRNA induced downregulation of DUB3 deubiquitinase, which was strongly linked to Mcl-1 destabilization. Furthermore, overexpression of Mcl-1 or DUB3 inhibited apoptosis by PTC596. Taken together, our findings reveal that the inhibition of BMI-1 induces Mcl-1 destabilization through downregulation of DUB3, resulting in the induction of cancer cell death.


Asunto(s)
Apoptosis , Bencimidazoles/farmacología , Regulación hacia Abajo , Endopeptidasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Pirazinas/farmacología , Células A549 , Índice de Masa Corporal , Caspasa 3/metabolismo , Muerte Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fragmentación del ADN , Activación Enzimática , Células HeLa , Humanos , Células Madre Neoplásicas/metabolismo , ARN Interferente Pequeño/metabolismo , Ubiquitina/química
16.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924053

RESUMEN

Previous studies have investigated the inhibitory effect of BMI-1026 on cyclin-dependent kinase 1 in vitro. However, the molecular mechanisms by which BMI-1026 treatment leads to cancer cell death remain unclear. This study was conducted to investigate the anticancer mechanisms of BMI-1026 on human renal carcinoma Caki cells. BMI-1026 induced apoptosis in association with the cleavage of poly(ADP-ribose) polymerase and pro-caspase-3 and the release of apoptosis-inducing factor and cytochrome c from mitochondria in Caki cells. BMI-1026-induced apoptosis was inhibited by the pan-caspase inhibitor z-VAD-fmk. Furthermore, BMI-1026 downregulated Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP) at the transcriptional level and Mcl-1 (L) and cellular FADD-like IL-1ß-converting enzyme inhibitory protein (c-FLIP (L)) at the post-transcriptional level. Interestingly, Mcl-1 (L) and c-FLIP (L), but not Bcl-2 or XIAP, played important roles in BMI-1026-induced Caki cell apoptosis. Although the constitutively active form of Akt did not attenuate BMI-1026-induced apoptosis, blockade of the PI3K/Akt pathway using a subcytotoxic concentration of the PI3K/Akt inhibitor LY294002 enhanced Caki cell apoptosis induced by BMI-1026. Electrophysiological safety was confirmed by determining the cardiotoxicity of BMI-1026 via left ventricular pressure analysis. These results suggest that BMI-1026 is a potent multitarget anticancer agent with electrophysiological safety and should be further investigated.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Carcinoma de Células Renales/metabolismo , Fenoles/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/farmacología , Western Blotting , Línea Celular Tumoral , Cromonas/farmacología , Regulación hacia Abajo , Citometría de Flujo , Células HCT116 , Humanos , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo
17.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008442

RESUMEN

A lucanthone, one of the family of thioxanthenones, has been reported for its inhibitory effects of apurinic endonuclease-1 and autophagy. In this study, we investigated whether lucanthone could enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in various cancer cells. Combined treatment with lucanthone and TRAIL significantly induced apoptosis in human renal carcinoma (Caki and ACHN), prostate carcinoma (PC3), and lung carcinoma (A549) cells. However, combined treatment did not induce apoptosis in normal mouse kidney cells (TCMK-1) and normal human skin fibroblast (HSF). Lucanthone downregulated protein expression of deubiquitinase DUB3, and a decreased expression level of DUB3 markedly led to enhance TRAIL-induced apoptosis. Ectopic expression of DUB3 inhibited combined treatment with lucanthone and TRAIL-induced apoptosis. Moreover, lucanthone increased expression level of DR5 mRNA via downregulation of miR-216a-5p. Transfection of miR-216a-5p mimics suppressed the lucanthone-induced DR5 upregulation. Taken together, these results provide the first evidence that lucanthone enhances TRAIL-induced apoptosis through DR5 upregulation by downregulation of miR-216a-5p and DUB3-dependent Mcl-1 downregulation in human renal carcinoma cells.


Asunto(s)
Endopeptidasas/metabolismo , Lucantona/farmacología , MicroARNs/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neoplasias/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Células A549 , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células PC-3 , Regulación hacia Arriba
18.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502316

RESUMEN

Farrerol (FA) is a flavanone isolated from the Chinese herbal medicine "Man-shan-hong" (Rhododendron dauricum L.). In the present study, FA decreased the viability of SKOV3 cells in a dose- and time-dependent manner, and it induced G2/M cell cycle arrest and cell apoptosis. Cell cycle distribution analysis via flow cytometry showed that FA decreased G1 populations and increased G2/M populations in SKOV3 cells. Additionally, Western blotting confirmed an increase in the expression level of proteins involved in the cell cycle, e.g., CDK and cyclins. FA-induced apoptosis in SKOV3 cells was also investigated using a TUNEL assay, and increased expression levels of proapoptotic factors, including Caspase-3 and poly ADP ribose polymerase (PARP), through the Extracellular signal-regulated kinase (ERK)/MAPK pathway were investigated. Proinflammatory cytokines (e.g., IL-6, TNF-α, and IL-1) have been identified as a driver of the pathological mechanisms underlying involuntary weight loss and impaired physical function, i.e., cachexia, during cancer; in the present study, we showed that farrerol attenuates TNF-α-induced lipolysis and increases adipogenic differentiation in 3T3-L1 cells. Thus, farrerol could potentially be used as an anticancer agent or anticachetic drug.


Asunto(s)
Cromonas/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Lipólisis/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/farmacología , Apoptosis , Ciclo Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Células Tumorales Cultivadas
19.
Molecules ; 26(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34361560

RESUMEN

The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of GM2 on 2,4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae extract (DFE)-induced AD-like skin lesions with BALB/c mice ears and within the tumor necrosis factor (TNF)-α and interferon (IFN)-γ-stimulated keratinocytes. The oral administration of GM2 resulted in reduced epidermal and dermal thickness, infiltration of tissue eosinophils, mast cells, and helper T cells in AD-like lesions. GM2 suppressed the expression of IL-1ß, IL-4, IL-5, IL-6, IL-12a, and TSLP in ear tissue and the expression of IFN-γ, IL-4, and IL-17A in auricular lymph nodes. GM2 also inhibited STAT1 and NF-κB phosphorylation in DNCB/DFE-induced AD-like lesions. The oral administration of GM2 reduced levels of IgE (DFE-specific and total) and IgG2a in the mice sera, as well as protein levels of IL-4, IL-6, and TSLP in ear tissues. In TNF-α/IFN-γ-stimulated keratinocytes, GM2 significantly inhibited IL-1ß, IL-6, CXCL8, and CCL22 through the suppression of STAT1 phosphorylation and the nuclear translocation of NF-κB. Taken together, these results indicate that GM2 is a biologically active compound that exhibits inhibitory effects on skin inflammation and suggests that GM2 might serve as a remedy in inflammatory skin diseases, specifically on AD.


Asunto(s)
Antiinflamatorios/farmacología , Ciclooctanos/farmacología , Dermatitis Atópica , Dermatophagoides farinae/inmunología , Dermis/inmunología , Dinitroclorobenceno/toxicidad , Epidermis/inmunología , FN-kappa B/inmunología , Factor de Transcripción STAT1/inmunología , Animales , Antiinflamatorios/química , Ciclooctanos/química , Citocinas/inmunología , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inmunología , Ratones , Ratones Endogámicos BALB C
20.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698512

RESUMEN

PIM kinases, a small family of serine/threonine kinases, are important intermediates in the cytokine signaling pathway of inflammatory disease. In this study, we investigated whether the novel PIM kinase inhibitor KMU-470, a derivative of indolin-2-one, inhibits lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 cells. We demonstrated that KMU-470 suppressed the production of nitric oxide and inducible nitric oxide synthases that are induced by LPS in RAW 264.7 cells. Furthermore, KMU-470 inhibited LPS-induced up-regulation of TLR4 and MyD88, as well as the phosphorylation of IκB kinase and NF-κB in RAW 264.7 cells. Additionally, KMU-470 suppressed LPS-induced up-regulation at the transcriptional level of various pro-inflammatory cytokines such as IL-1ß, TNF-α, and IL-6. Notably, KMU-470 inhibited LPS-induced up-regulation of a major component of the inflammasome complex, NLRP3, in RAW 264.7 cells. Importantly, PIM-1 siRNA transfection attenuated up-regulation of NLRP3 and pro-IL-1ß in LPS-treated RAW 264.7 cells. Taken together, these findings indicate that PIM-1 plays a key role in inflammatory signaling and that KMU-470 is a potential anti-inflammatory agent.


Asunto(s)
Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA