Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 32(15): 5097-105, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496555

RESUMEN

The final motor output underlying behavior arises from an appropriate balance between excitation and inhibition within neural networks. Retrograde signaling by endocannabinoids adapts synaptic strengths and the global activity of neural networks. In the spinal cord, endocannabinoids are mobilized postsynaptically from network neurons and act retrogradely on presynaptic cannabinoid receptors to potentiate the locomotor frequency. However, it is still unclear whether mechanisms exist within the locomotor networks that determine the sign of the modulation by cannabinoid receptors to differentially regulate excitation and inhibition. In this study, using the lamprey spinal cord in vitro, we first report that 2-AG (2-arachidonyl glycerol) is mobilized by network neurons and underlies a form of modulation that is embedded within the locomotor networks. We then show that the polarity of the endocannabinoid modulation is gated by nitric oxide to enable simultaneously potentiation of excitation and depression of inhibition within the spinal locomotor networks. Our results suggest that endocannabinoid and nitric oxide systems interact to mediate inversion of the polarity of synaptic plasticity within the locomotor networks. Thus, endocannabinoid and nitric oxide shift in the excitation-inhibition balance to set the excitability of the spinal locomotor network.


Asunto(s)
Moduladores de Receptores de Cannabinoides/farmacología , Endocannabinoides , Lampreas/fisiología , Locomoción/efectos de los fármacos , Red Nerviosa/fisiología , Plasticidad Neuronal/efectos de los fármacos , Óxido Nítrico/farmacología , Médula Espinal/fisiología , Animales , Ácidos Araquidónicos/farmacología , Benzodioxoles/farmacología , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Glicéridos/farmacología , Lactonas/farmacología , Masculino , N-Metilaspartato/farmacología , Red Nerviosa/citología , Neurotransmisores/farmacología , Óxido Nítrico/antagonistas & inhibidores , Orlistat , Técnicas de Placa-Clamp , Piperidinas/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
2.
J Neurosci ; 31(23): 8422-31, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21653846

RESUMEN

Motor behavior is generated by specific neural circuits. Those producing locomotion are located in the spinal cord, and their activation depends on descending inputs from the brain or on sensory inputs. In this study, we have used an in vitro brainstem-spinal cord preparation from adult zebrafish to localize a region where stimulation of descending inputs can induce sustained locomotor activity. We show that a brief stimulation of descending inputs at the junction between the brainstem and spinal cord induces long-lasting swimming activity. The swimming frequencies induced are remarkably similar to those observed in freely moving adult fish, arguing that the induced locomotor episode is highly physiological. The motor pattern is mediated by activation of ionotropic glutamate and glycine receptors in the spinal cord and is not the result of synaptic interactions between neurons at the site of the stimulation in the brainstem. We also compared the activity of motoneurons during locomotor activity induced by electrical stimulation of descending inputs and by exogenously applied NMDA. Prolonged NMDA application changes the shape of the synaptic drive and action potentials in motoneurons. When escape activity occurs, the swimming activity in the intact zebrafish was interrupted and some of the motoneurons involved became inhibited in vitro. Thus, the descending inputs seem to act as a switch to turn on the activity of the spinal locomotor network in the caudal spinal cord. We propose that recurrent synaptic activity within the spinal locomotor circuits can transform a brief input into a well coordinated and long-lasting swimming pattern.


Asunto(s)
Tronco Encefálico/fisiología , Locomoción/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Tronco Encefálico/efectos de los fármacos , Vías Eferentes/efectos de los fármacos , Vías Eferentes/fisiología , Electrofisiología , Agonistas de Aminoácidos Excitadores/farmacología , Locomoción/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , N-Metilaspartato/farmacología , Médula Espinal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Pez Cebra
3.
Proc Natl Acad Sci U S A ; 105(52): 20941-6, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19095801

RESUMEN

Na(+)-activated K(+) (K(Na)) channels are expressed in neurons and are activated by Na(+) influx through voltage-dependent channels or ionotropic receptors, yet their function remains unclear. Here we show that K(Na) channels are associated with AMPA receptors and that their activation depresses synaptic responses. Synaptic activation of K(Na) channels by Na(+) transients via AMPA receptors shapes the decay of AMPA-mediated current as well as the amplitude of the synaptic potential. Thus, the coupling between K(Na) channels and AMPA receptors by synaptically induced Na(+) transients represents an inherent negative feedback mechanism that scales down the magnitude of excitatory synaptic responses.


Asunto(s)
Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Receptores AMPA/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Lampreas , Ratas
4.
J Neurosci ; 29(42): 13283-91, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19846716

RESUMEN

To understand the intrinsic operation of spinal networks generating locomotion, we need to not only characterize the constituent neurons and their connectivity, but also determine the role of intrinsic modulation in shaping the final motor output. We have focused on the effects of nitric oxide (NO) on the locomotor frequency and the underlying synaptic mechanisms in the lamprey spinal cord. To identify the source of NO, we used NADPH-diaphorase histochemistry and nNOS immunocytochemistry. Gray matter and sensory neurons were positively labeled using both methods. Preparations preincubated with NO synthase inhibitors displayed slower locomotor frequency that increased upon washout of the inhibitors, suggesting that NO is an endogenous neuromodulator in the spinal cord. Application of NO donors increased the locomotor frequency that was blocked by an NO scavenger and partially reduced by an inhibitor of sGC. To analyze the synaptic modulation underlying the NO-induced increase of the locomotor frequency we performed intracellular recordings from motoneurons and interneurons. The NO-induced increase in locomotor frequency was associated with a decrease in the midcycle inhibition and an increase in on-cycle excitation. To determine the site of action of NO, we examined the effect of NO donors on miniature PSCs. NO increased both the frequency and amplitude of mEPSCs while it only decreased the frequency of mIPSCs, suggesting the increased excitation is mediated by both presynaptic and postsynaptic mechanisms, while the decrease in inhibition involves only presynaptic mechanisms. Our results demonstrate a significant role of NO in adult vertebrate motor control which, via modulation of both excitatory and inhibitory transmission, increases the locomotor burst frequency.


Asunto(s)
Locomoción/fisiología , Óxido Nítrico/metabolismo , Médula Espinal/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Benzoatos/farmacología , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hidrazinas/farmacología , Imidazoles/farmacología , Técnicas In Vitro , Lampreas/fisiología , Locomoción/efectos de los fármacos , NADPH Deshidrogenasa/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Sodio/farmacología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Tetrodotoxina/farmacología
5.
J Neurosci ; 29(33): 10387-95, 2009 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-19692613

RESUMEN

Serotonin (5-HT) plays an important role in shaping the activity of the spinal networks underlying locomotion in many vertebrate preparations. At larval stages in zebrafish, 5-HT does not change the frequency of spontaneous swimming; and it only decreases the quiescent period between consecutive swimming episodes. However, it is not known whether 5-HT exerts similar actions on the locomotor network at later developmental stages. For this, the effect of 5-HT on the fictive locomotor pattern of juvenile and adult zebrafish was analyzed. Bath-application of 5-HT (1-20 mum) reduced the frequency of the NMDA-induced locomotor rhythm. Blocking removal from the synaptic cleft with the reuptake inhibitor citalopram had similar effects, suggesting that endogenous serotonin is modulating the locomotor pattern. One target for this modulation was the mid-cycle inhibition during locomotion because the IPSPs recorded in spinal neurons during the hyperpolarized phase were increased both in amplitude and occurrence by 5-HT. Similar results were obtained for IPSCs recorded in spinal neurons clamped at the reversal potential of excitatory currents (0 mV). 5-HT also slows down the rising phase of the excitatory drive recorded in spinal cord neurons when glycinergic inhibition is blocked. These results suggest that the decrease in the locomotor burst frequency induced by 5-HT is mediated by a potentiation of mid-cycle inhibition combined with a delayed onset of the subsequent depolarization.


Asunto(s)
Actividad Motora/fisiología , Serotonina/metabolismo , Sinapsis/fisiología , Pez Cebra/fisiología , Animales , Sinapsis/metabolismo
6.
Neuron ; 45(1): 95-104, 2005 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-15629705

RESUMEN

Endocannabinoids act as retrograde signals to modulate synaptic transmission. Little is known, however, about their significance in integrated network activity underlying motor behavior. We have examined the physiological effects of endocannabinoids in a neuronal network underlying locomotor behavior using the isolated lamprey spinal cord. Our results show that endocannabinoids are released during locomotor activity and participate in setting the baseline burst rate. They are released in response to mGluR1 activation and act as retrograde messengers. This conditional release of endocannabinoids can transform motoneurons and crossing interneurons into modulatory neurons by enabling them to regulate their inhibitory synaptic inputs and thus contribute to the modulation of the locomotor burst frequency. These results provide evidence that endocannabinoid retrograde signaling occurs within the locomotor network and contributes to motor pattern generation and regulation in the spinal cord.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Locomoción/fisiología , Red Nerviosa/metabolismo , Neurotransmisores/metabolismo , Médula Espinal/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Agonistas de Receptores de Cannabinoides , Antagonistas de Receptores de Cannabinoides , Cannabinoides/farmacología , Lampreas , Locomoción/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
7.
J Physiol ; 587(Pt 12): 3001-8, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19403613

RESUMEN

Metabotropic glutamate receptor subtype 1 (mGluR1) contributes importantly to the activity of the spinal locomotor network. For example, it potentiates NMDA current and inhibits leak conductance in lamprey spinal cord neurons. In this study we examined the signalling pathways underlying the mGluR1 modulation of NMDA receptors and leak channels, respectively. Our results show that mGluR1-induced potentiation of NMDA current required activation of phospholipase C (PLC) and was independent of the increase in the intracellular Ca2+ concentration because it was unaffected by the Ca2+ chelator BAPTA and by depletion of the internal Ca2+ stores with thapsigargin. We also show that the mGluR1-mediated inhibition of leak channels is mediated by activation of G-proteins. Finally, we show that blockade of protein kinase C (PKC) abolished the mGluR1-induced inhibition of leak current without affecting the potentiation of NMDA receptors. The contribution of mGluR1-mediated modulation of leak channels to the potentiation of the locomotor cycle frequency was assessed during fictive locomotion. Blockade of PKC significantly decreased the short-term potentiation of locomotor cycle frequency by mGluR1. These results show that the effects of mGluR1 activation on the two cellular targets, the NMDA receptor and leak channels, are mediated through separate signalling pathways.


Asunto(s)
Lampreas/fisiología , Locomoción/fisiología , Red Nerviosa/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Proteínas de Unión al GTP/fisiología , Potenciación a Largo Plazo/fisiología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Proteína Quinasa C/fisiología , Médula Espinal/fisiología , Fosfolipasas de Tipo C/fisiología
8.
Brain Res Rev ; 57(1): 29-36, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17719648

RESUMEN

To understand how the spinal central pattern generators produce locomotor movements, it is necessary to characterize the network's connectivity, the intrinsic properties of the constituent neurons and the modulatory mechanisms. Modulation operating within spinal locomotor networks is required for the generation of the final motor output. In this review, we have summarized how endocannabinoids released by locomotor network neurons contribute to setting the baseline locomotor frequency. They are synthesized on demand as a result of activation of mGluR1 and act as retrograde messengers to depress inhibitory synaptic transmission. We also discuss how endogenous activation of mGluR1 contributes to the normal operation of the spinal locomotor network and the underlying cellular and synaptic mechanisms.


Asunto(s)
Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Locomoción/fisiología , Red Nerviosa/fisiología , Transducción de Señal/fisiología , Médula Espinal/fisiología , Animales , Moduladores de Receptores de Cannabinoides/metabolismo , Humanos , Interneuronas/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/metabolismo , Receptores AMPA/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Médula Espinal/metabolismo , Sinapsis/fisiología
9.
J Neurosci ; 27(46): 12664-74, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18003846

RESUMEN

Retrograde signaling by endocannabinoids is known to induce short- and long-term synaptic plasticity, but the significance of this modulation for the activity of neural networks underlying motor behavior is largely unclear. Here, we used the isolated lamprey spinal cord to show that endocannabinoids released by activation of metabotropic glutamate receptor 1 (mGluR1) induce long-term synaptic plasticity during an ongoing locomotor rhythm and how this is translated onto the integrated activity of the spinal circuitry. A brief activation of mGluR1 induces a long-term increase in the locomotor frequency that is mediated by a concomitant long-term depression of midcycle reciprocal inhibition and long-term potentiation of ipsilateral synaptic excitation arising from locomotor circuit interneurons. Blockade of cannabinoid receptors with AM251 prevented the mGluR1-mediated long-term plasticity of both inhibitory and excitatory synaptic transmission, as well as that of the locomotor activity. Similarly, inhibition of nitric oxide signaling blocked the mGluR1-mediated long-term plasticity. These results show that the locomotor circuitry is endowed with a "memory" capacity mediated by a long-term shift in the balance between synaptic inhibition and excitation. This is triggered by activation of mGluR1 and requires subsequent endocannabinoid and nitric oxide signaling.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Actividad Motora/fisiología , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Óxido Nítrico/metabolismo , Médula Espinal/metabolismo , Animales , Antagonistas de Receptores de Cannabinoides , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Lampreas , Actividad Motora/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Vías Nerviosas/anatomía & histología , Plasticidad Neuronal/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Receptores de Cannabinoides/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/anatomía & histología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tiempo
10.
Neurophotonics ; 4(3): 031203, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27921067

RESUMEN

The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs.

11.
Neurophotonics ; 4(3): 031204, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27921068

RESUMEN

Sensorimotor processing occurs in a highly distributed manner in the mammalian neocortex. The spatiotemporal dynamics of electrical activity in the dorsal mouse neocortex can be imaged using voltage-sensitive dyes (VSDs) with near-millisecond temporal resolution and [Formula: see text] spatial resolution. Here, we trained mice to lick a water reward spout after a 1-ms deflection of the C2 whisker, and we imaged cortical dynamics during task execution with VSD RH1691. Responses to whisker deflection were highly dynamic and spatially highly distributed, exhibiting high variability from trial to trial in amplitude and spatiotemporal dynamics. We differentiated trials based on licking and whisking behavior. Hit trials, in which the mouse licked after the whisker stimulus, were accompanied by overall greater depolarization compared to miss trials, with the strongest hit versus miss differences being found in frontal cortex. Prestimulus whisking decreased behavioral performance by increasing the fraction of miss trials, and these miss trials had attenuated cortical sensorimotor responses. Our data suggest that the spatiotemporal dynamics of depolarization in mouse sensorimotor cortex evoked by a single brief whisker deflection are subject to important behavioral modulation during the execution of a simple, learned, goal-directed sensorimotor transformation.

12.
Nat Neurosci ; 16(11): 1671-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24097038

RESUMEN

Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (<50 ms) reliable sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.


Asunto(s)
Potenciales de la Membrana/fisiología , Neuronas/fisiología , Células Receptoras Sensoriales/fisiología , Corteza Somatosensorial/citología , Vibrisas/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Anestésicos Locales/farmacología , Animales , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Nervio Facial/fisiología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Parvalbúminas/genética , Parvalbúminas/metabolismo , Estimulación Física , Detección de Señal Psicológica/efectos de los fármacos , Detección de Señal Psicológica/fisiología , Tetrodotoxina/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Valina/análogos & derivados , Valina/farmacología
13.
Prog Brain Res ; 187: 99-110, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21111203

RESUMEN

Discrete neural networks in the central nervous system generate the repertoire of motor behavior necessary for animal survival. The final motor output of these networks is the result of the anatomical connectivity between the individual neurons and also their biophysical properties as well as the dynamics of their synaptic transmission. To illustrate how this processing takes place to produce coordinated motor activity, we have summarized some of the results available from the lamprey spinal locomotor network. The detailed knowledge available in this model system on the organization of the network together with the properties of the constituent neurons and the modulatory systems allows us to determine how the impact of specific ion channels and receptors is translated to the global activity of the locomotor circuitry. Understanding the logic of the neuronal and synaptic processing within the locomotor network will provide information about not only their normal operation but also how they react to disruption such as injuries or trauma.


Asunto(s)
Canales Iónicos/metabolismo , Locomoción/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Médula Espinal/anatomía & histología , Médula Espinal/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Moduladores de Receptores de Cannabinoides/metabolismo , Lampreas/anatomía & histología , Lampreas/fisiología , Óxido Nítrico/metabolismo , Potasio/metabolismo , Transmisión Sináptica/fisiología
14.
J Neurophysiol ; 99(1): 37-48, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17977928

RESUMEN

The zebrafish is an attractive model system for studying the function of the spinal locomotor network by combining electrophysiological, imaging, and genetic approaches. Thus far, most studies have been focusing on embryonic and larval stages. In this study we have developed an in vitro preparation of the isolated spinal cord from adult zebrafish in which locomotor activity can be induced while the activity of single neurons can be monitored using whole cell recording techniques. Application of NMDA elicited rhythmic locomotor activity that was monitored by recording from muscles or ventral roots in semi-intact or isolated spinal cord preparations, respectively. This rhythmic activity displayed a left-right alternation and a rostrocaudal delay. Blockade of glycinergic synaptic transmission by strychnine switched the alternating activity into synchronous bursting in the left and right sides as well as along the rostrocaudal axis. Whole cell recordings from motoneurons showed that they receive phasic synaptic inputs that were correlated with the locomotor activity recorded in ventral roots. This newly developed in vitro preparation of the adult zebrafish spinal cord will allow examination of the organization of the spinal locomotor network in an adult system to complement studies in zebrafish larvae and new born rodents.


Asunto(s)
Locomoción/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Médula Espinal/fisiología , Pez Cebra/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Lateralidad Funcional/fisiología , Glicina/antagonistas & inhibidores , Glicina/metabolismo , Locomoción/efectos de los fármacos , Modelos Biológicos , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Red Nerviosa/citología , Red Nerviosa/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Periodicidad , Médula Espinal/citología , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/fisiología , Estricnina/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Pez Cebra/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA