Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Plant J ; 99(6): 1172-1191, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31108005

RESUMEN

Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi-environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype-by-environment (G×E) modelling. Sub-populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock-related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large-effect alleles. Our analysis supports a gene-level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.


Asunto(s)
Aclimatación/genética , Productos Agrícolas/genética , Exoma , Hordeum/genética , Relojes Circadianos/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Geografía , Haplotipos , Desequilibrio de Ligamiento , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Secuenciación del Exoma
2.
Nat Commun ; 8(1): 936, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038434

RESUMEN

The barley inflorescence (spike) comprises a multi-noded central stalk (rachis) with tri-partite clusters of uni-floretted spikelets attached alternately along its length. Relative fertility of lateral spikelets within each cluster leads to spikes with two or six rows of grain, or an intermediate morphology. Understanding the mechanisms controlling this key developmental step could provide novel solutions to enhanced grain yield. Classical genetic studies identified five major SIX-ROWED SPIKE (VRS) genes, with four now known to encode transcription factors. Here we identify and characterise the remaining major VRS gene, VRS3, as encoding a putative Jumonji C-type H3K9me2/me3 demethylase, a regulator of chromatin state. Exploring the expression network modulated by VRS3 reveals specific interactions, both with other VRS genes and genes involved in stress, hormone and sugar metabolism. We show that combining a vrs3 mutant allele with natural six-rowed alleles of VRS1 and VRS5 leads to increased lateral grain size and greater grain uniformity.The VRS genes of barley control the fertility of the lateral spikelets on the barley inflorescence. Here, Bull et al. show that VRS3 encodes a putative Jumonji C-type histone demethylase that regulates expression of other VRS genes, and genes involved in stress, hormone and sugar metabolism.


Asunto(s)
Copas de Floración/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Histona Demetilasas con Dominio de Jumonji/genética , Metabolismo de los Hidratos de Carbono , Fertilidad , Haplotipos , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Selección Genética , Estrés Fisiológico
3.
Nat Genet ; 48(9): 1024-30, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27428750

RESUMEN

After domestication, during a process of widespread range extension, barley adapted to a broad spectrum of agricultural environments. To explore how the barley genome responded to the environmental challenges it encountered, we sequenced the exomes of a collection of 267 georeferenced landraces and wild accessions. A combination of genome-wide analyses showed that patterns of variation have been strongly shaped by geography and that variant-by-environment associations for individual genes are prominent in our data set. We observed significant correlations of days to heading (flowering) and height with seasonal temperature and dryness variables in common garden experiments, suggesting that these traits were major drivers of environmental adaptation in the sampled germplasm. A detailed analysis of known flowering-associated genes showed that many contain extensive sequence variation and that patterns of single- and multiple-gene haplotypes exhibit strong geographical structuring. This variation appears to have substantially contributed to range-wide ecogeographical adaptation, but many factors key to regional success remain unidentified.


Asunto(s)
Adaptación Fisiológica/genética , Ambiente , Exoma/genética , Genes de Plantas/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Genotipo , Geografía , Hordeum , Fenotipo
4.
Cells ; 3(2): 563-91, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24918976

RESUMEN

The receptor tyrosine kinases (RTKs) are key drivers of cancer progression and targets for drug therapy. A major challenge in anti-RTK treatment is the dependence of drug effectiveness on co-expression of multiple RTKs which defines resistance to single drug therapy. Reprogramming of the RTK network leading to alteration in RTK co-expression in response to drug intervention is a dynamic mechanism of acquired resistance to single drug therapy in many cancers. One route to overcome this resistance is combination therapy. We describe the results of a joint in silico, in vitro, and in vivo investigations on the efficacy of trastuzumab, pertuzumab and their combination to target the HER2 receptors. Computational modelling revealed that these two drugs alone and in combination differentially suppressed RTK network activation depending on RTK co-expression. Analyses of mRNA expression in SKOV3 ovarian tumour xenograft showed up-regulation of HER3 following treatment. Considering this in a computational model revealed that HER3 up-regulation reprograms RTK kinetics from HER2 homodimerisation to HER3/HER2 heterodimerisation. The results showed synergy of the trastuzumab and pertuzumab combination treatment of the HER2 overexpressing tumour can be due to an independence of the combination effect on HER3/HER2 composition when it changes due to drug-induced RTK reprogramming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA