RESUMEN
All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.
Asunto(s)
Transporte de Electrón , Hipoxia/metabolismo , Mitocondrias/metabolismo , Sistemas de Mensajero Secundario , Sodio/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fosfatos de Calcio/metabolismo , Línea Celular Tumoral , Precipitación Química , Humanos , Masculino , Fluidez de la Membrana , Ratones Endogámicos C57BL , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Intercambiador de Sodio-Calcio/metabolismoRESUMEN
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Animales , Terapia Molecular DirigidaRESUMEN
Alzheimer's disease (AD) is characterized by the deposition in the brain of senile plaques composed of amyloid-ß peptides (Aßs) that increase inflammation. An endogenous peptide derived from the insulin-like growth factor (IGF)-I, glycine-proline-glutamate (GPE), has IGF-I-sensitizing and neuroprotective actions. Here, we examined the effects of GPE on Aß levels and hippocampal inflammation generated by the intracerebroventricular infusion of Aß25-35 for 2 weeks (300 pmol/day) in ovariectomized rats and the signaling-related pathways and levels of Aß-degrading enzymes associated with these GPE-related effects. GPE prevented the Aß-induced increase in the phosphorylation of p38 mitogen-activated protein kinase and the reduction in activation of signal transducer and activator of transcription 3, insulin receptor substrate-1, and Akt, as well as on interleukin (IL)-2 and IL-13 levels in the hippocampus. The functionality of somatostatin, measured as the percentage of inhibition of adenylate cyclase activity and the levels of insulin-degrading enzyme, was also preserved by GPE co-treatment. These findings indicate that GPE co-administration may protect from Aß insult by changing hippocampal cytokine content and somatostatin functionality through regulation of leptin- and IGF-I-signaling pathways that could influence the reduction in Aß levels through modulation of levels and/or activity of Aß proteases.
Asunto(s)
Péptidos beta-Amiloides , Hipocampo , Factor I del Crecimiento Similar a la Insulina , Oligopéptidos , Transducción de Señal , Animales , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas , Factor I del Crecimiento Similar a la Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Femenino , Oligopéptidos/farmacología , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Fragmentos de Péptidos/metabolismo , Ratas Wistar , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Péptidos Similares a la InsulinaRESUMEN
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is considered the master regulator of the phase II antioxidant response. It controls a plethora of cytoprotective genes related to oxidative stress, inflammation, and protein homeostasis, among other processes. Activation of these pathways has been described in numerous pathologies including cancer, cardiovascular, respiratory, renal, digestive, metabolic, autoimmune, and neurodegenerative diseases. Considering the increasing interest of discovering novel NRF2 activators due to its clinical application, initial efforts were devoted to the development of electrophilic drugs able to induce NRF2 nuclear accumulation by targeting its natural repressor protein Kelch-like ECH-associated protein 1 (KEAP1) through covalent modifications on cysteine residues. However, off-target effects of these drugs prompted the development of an innovative strategy, the search of KEAP1-NRF2 protein-protein interaction (PPI) inhibitors. These innovative activators are proposed to target NRF2 in a more selective way, leading to potentially improved drugs with the application for a variety of diseases that are currently under investigation. In this review, we summarize known KEAP1-NRF2 PPI inhibitors to date and the bases of their design highlighting the most important features of their respective interactions. We also discuss the preclinical pharmacological properties described for the most promising compounds.
Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Enfermedades Neurodegenerativas , Humanos , Inflamación/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Estrés OxidativoRESUMEN
Drug discovery faces an efficacy crisis to which ineffective mainly single-target and symptom-based rather than mechanistic approaches have contributed. We here explore a mechanism-based disease definition for network pharmacology. Beginning with a primary causal target, we extend this to a second using guilt-by-association analysis. We then validate our prediction and explore synergy using both cellular in vitro and mouse in vivo models. As a disease model we chose ischemic stroke, one of the highest unmet medical need indications in medicine, and reactive oxygen species forming NADPH oxidase type 4 (Nox4) as a primary causal therapeutic target. For network analysis, we use classical protein-protein interactions but also metabolite-dependent interactions. Based on this protein-metabolite network, we conduct a gene ontology-based semantic similarity ranking to find suitable synergistic cotargets for network pharmacology. We identify the nitric oxide synthase (Nos1 to 3) gene family as the closest target to Nox4 Indeed, when combining a NOS and a NOX inhibitor at subthreshold concentrations, we observe pharmacological synergy as evidenced by reduced cell death, reduced infarct size, stabilized blood-brain barrier, reduced reoxygenation-induced leakage, and preserved neuromotor function, all in a supraadditive manner. Thus, protein-metabolite network analysis, for example guilt by association, can predict and pair synergistic mechanistic disease targets for systems medicine-driven network pharmacology. Such approaches may in the future reduce the risk of failure in single-target and symptom-based drug discovery and therapy.
Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Descubrimiento de Drogas , NADPH Oxidasa 4/metabolismo , Óxido Nítrico Sintasa/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/prevención & control , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Masculino , Ratones , NADPH Oxidasa 4/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/efectos de los fármacos , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pirazoles/farmacología , Piridonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Accidente Cerebrovascular/prevención & controlRESUMEN
Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.
Asunto(s)
Enfermedad Crónica/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Factor 2 Relacionado con NF-E2/metabolismo , Análisis de Sistemas , Animales , Antiinflamatorios/uso terapéutico , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Humanos , Factor 2 Relacionado con NF-E2/genéticaRESUMEN
We previously reported that lipopolysaccharide (LPS) challenge caused microglial-mediated neuroinflammation and sickness behavior that was amplified in aged mice. As α7 nAChRs are implicated in the "Cholinergic anti-inflammatory pathway", we aimed to determine how α7 nAChR stimulation modulates microglial phenotype in an LPS-induced neuroinflammation model in adult and aged mice. For this, BALB/c mice were injected intraperitoneally with LPS (0.33 mg/kg) and treated with the α7 nAChR agonist PNU282987, using different administration protocols. LPS challenge reduced body weight and induced lethargy and social withdrawal in adult mice. Peripheral (intraperitoneal) co-administration of the α7 nAChR agonist PNU282987 with LPS, attenuated body weight loss and sickness behavior associated with LPS challenge in adult mice, and reduced microglial activation with suppression of IL-1ß and TNFα mRNA levels. Furthermore, central (intracerebroventricular) administration of the α7 nAChR agonist, even 2 h after LPS injection, attenuated the decrease in social exploratory behavior and microglial activation induced by peripheral administration of LPS, although this recovery was not achieved if activation of α7 nAChRs was performed peripherally. Finally, we observed that the positive results of central activation of α7 nAChRs were lost in aged mice. In conclusion, we provide evidence that stimulation of α7 nAChR signaling reduces microglial activation in an in vivo LPS-based model, but this cholinergic-dependent regulation seems to be dysfunctional in microglia of aged mice.
Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Conducta de Enfermedad/efectos de los fármacos , Inflamación/metabolismo , Agonistas Nicotínicos/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Factores de Edad , Animales , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/fisiopatología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inflamación/etiología , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/efectos adversos , Ratones , Receptor Nicotínico de Acetilcolina alfa 7/agonistasRESUMEN
Neuroinflammation is increasingly associated to the onset and progression of neurodegenerative diseases. Furthermore, several lines of evidence have demonstrated the capacity of aberrant protein aggregates to activate the immune response, accelerating the advance of the disease. Compound ITH12674 is a melatonin-sulforaphane hybrid designed to exert a dual drug-prodrug mechanism of action that combines potent NRF2 induction and free radical scavenger activity. ITH12674 also showed neuroprotective properties in oxidative stress related models, that were dependant on its NRF2 inducing properties. Given the high impact of neuroinflammation in the pathogenesis of neurodegeneration, we foresaw to study the anti-inflammatory properties of ITH12674. ITH12674 reduced inflammatory markers in glial cell cultures and hippocampal tissue after LPS administration. The anti-inflammatory effect was related to inhibition of TLR4 receptors due to a direct interaction with the TLR4/MD2 complex at the hydrophobic cavity of MD2. ITH12674 is endowed with anti-inflammatory properties, that are complementary to the NRF2 inducing activity and neuroprotective properties. Thus, ITH12674 could be of potential interest for the treatment of diseases with chronic neuroinflammation.
Asunto(s)
Antiinflamatorios/farmacología , Isotiocianatos/farmacología , Antígeno 96 de los Linfocitos/metabolismo , Melatonina/análogos & derivados , Neuroglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptor Toll-Like 4/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Células Cultivadas , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Locomoción/efectos de los fármacos , Masculino , Melatonina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Factor 2 Relacionado con NF-E2/genética , Neuroglía/metabolismo , Ratas Sprague-Dawley , Interacción Social/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/enzimología , Isquemia Miocárdica/enzimología , NADPH Oxidasa 4/genética , Animales , Benzoxazoles/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Inhibidores Enzimáticos/farmacología , Femenino , Arteria Femoral/lesiones , Regulación de la Expresión Génica , Miembro Posterior/irrigación sanguínea , Miembro Posterior/efectos de los fármacos , Miembro Posterior/metabolismo , Miembro Posterior/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Isquemia Miocárdica/prevención & control , NADPH Oxidasa 4/antagonistas & inhibidores , NADPH Oxidasa 4/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Especificidad de Órganos , Pirazoles/farmacología , Piridonas/farmacología , Ratas , Transducción de Señal , Triazoles/farmacologíaRESUMEN
Neuronal hippocampal death can be induced by exacerbated levels of cortisol, a condition usually observed in patients with Major depressive disorder (MDD). Previous in vitro and in vivo studies showed that ursolic acid (UA) elicits antidepressant and neuroprotective properties. However, the protective effects of UA against glucocorticoid-induced cytotoxicity have never been addressed. Using an in vitro model of hippocampal cellular death induced by elevated levels of corticosterone, we investigated if UA prevents corticosterone-induced cytotoxicity in HT22 mouse hippocampal derived cells. Concentrations lower than 25 µM UA did not alter cell viability. Co-incubation with UA for 48 h was able to protect HT22 cells from the reduction on cell viability and from the increase in apoptotic cells induced by corticosterone. Inhibition of protein kinase A (PKA), protein kinase C (PKC) and, Ca2+/calmodulin-dependent protein kinase II (CaMKII), but not phosphoinositide 3-kinase(PI3K), by using the pharmacological the inhibitors: H-89, chelerythrine, KN-62, and LY294002, respectively totally abolished the cytoprotective effects of UA. Finally, UA abrogated the reduction in phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not in phospho-c-Jun kinases induced by corticosterone. These results indicate that the protective effect of UA against the cytotoxicity induced by corticosterone in HT22 cells may involve PKA, PKC, CaMKII, and ERK1/2 activation. The cytoprotective potential of UA against corticosterone-induced cytotoxicity and its ability to modulate intracellular signaling pathways involved in cell proliferation and survival suggest that UA may be a relevant strategy to manage stress-related disorders such as MDD.
RESUMEN
Alterations in autophagy are increasingly being recognized in the pathogenesis of proteinopathies like Alzheimer's disease (AD). This study was conducted to evaluate whether melatonin treatment could provide beneficial effects in an Alzheimer model related to tauopathy by improving the autophagic flux and, thereby, prevent cognitive decline. The injection of AAV-hTauP301L viral vectors and treatment/injection with okadaic acid were used to achieve mouse and human ex vivo, and in vivo tau-related models. Melatonin (10 µmol/L) impeded oxidative stress, tau hyperphosphorylation, and cell death by restoring autophagy flux in the ex vivo models. In the in vivo studies, intracerebroventricular injection of AAV-hTauP301L increased oxidative stress, neuroinflammation, and tau hyperphosphorylation in the hippocampus 7 days after the injection, without inducing cognitive impairment; however, when animals were maintained for 28 days, cognitive decline was apparent. Interestingly, late melatonin treatment (10 mg/kg), starting once the alterations mentioned above were established (from day 7 to day 28), reduced oxidative stress, neuroinflammation, tau hyperphosphorylation, and caspase-3 activation; these observations correlated with restoration of the autophagy flux and memory improvement. This study highlights the importance of autophagic dysregulation in tauopathy and how administration of pharmacological doses of melatonin, once tauopathy is initiated, can restore the autophagy flux, reduce proteinopathy, and prevent cognitive decline. We therefore propose exogenous melatonin supplementation or the development of melatonin derivatives to improve autophagy flux for the treatment of proteinopathies like AD.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Muerte Celular Autofágica/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratas , Ratas Sprague-DawleyRESUMEN
In this review, we show how chromaffin cells have contributed to evaluate neuroprotective compounds with diverse mechanisms of action. Chromaffin cells are considered paraneurons, as they share many common features with neurons: (i) they synthesize, store, and release neurotransmitters upon stimulation and (ii) they express voltage-dependent calcium, sodium, and potassium channels, in addition to a wide variety of receptors. All these characteristics, together with the fact that primary cultures from bovine adrenal glands or chromaffin cells from the tumor pheochromocytoma cell line PC12 are easy to culture, make them an ideal model to study neurotoxic mechanisms and neuroprotective drugs. In the first part of this review, we will analyze the different cytotoxicity models related to calcium dyshomeostasis and neurodegenerative disorders like Alzheimer's or Parkinson's. Along the second part of the review, we describe how different classes of drugs have been evaluated in chromaffin cells to determine their neuroprotective profile in different neurodegenerative-related models.
Asunto(s)
Muerte Celular , Células Cromafines/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Fármacos Neuroprotectores/farmacología , Pruebas de Toxicidad/métodos , Animales , Calcio/metabolismo , Células Cromafines/metabolismo , HumanosRESUMEN
Growing evidence suggests a close relationship between Alzheimer's Disease (AD) and cerebral hypoxia. Astrocytes play a key role in brain homeostasis and disease states, while some of the earliest changes in AD occur in astrocytes. We have therefore investigated whether mutations associated with AD increase astrocyte vulnerability to ischemia. Two astroglioma cell lines derived from APPSWE /PS1A246E (APP, amyloid precursor protein; PS1, presenilin 1) transgenic mice and controls from normal mice were subjected to oxygen and glucose deprivation (OGD), an in vitro model of ischemia. Cell death was increased in the APPSWE /PS1A246E line compared to the control. Increasing extracellular calcium concentration ([Ca2+ ]) exacerbated cell death in the mutant but not in the control cells. In order to explore cellular Ca2+ homeostasis, the cells were challenged with ATP or thapsigargin and [Ca2+ ] was measured by fluorescence microscopy. Changes in cytosolic Ca2+ concentration ([Ca2+ ]c ) were potentiated in the APPSWE /PS1A246E transgenic line. Mitochondrial function was also altered in the APPSWE /PS1A246E astroglioma cells; mitochondrial membrane potential and production of reactive oxygen species were increased, while mitochondrial basal respiratory rate and ATP production were decreased compared to control astroglioma cells. These results suggest that AD mutations in astrocytes make them more sensitive to ischemia; Ca2+ dysregulation and mitochondrial dysfunction may contribute to this increased vulnerability. Our results also highlight the role of astrocyte dyshomeostasis in the pathophysiology of neurodegenerative brain disorders.
Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Isquemia Encefálica , Calcio/metabolismo , Mitocondrias/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular , Glucosa/deficiencia , Ratones , Ratones Transgénicos , Mutación , Oxígeno , Presenilina-1/genéticaRESUMEN
Positive allosteric modulation of α7 isoform of nicotinic acetylcholine receptors (α7-nAChRs) is emerging as a promising therapeutic approach for central nervous system disorders such as schizophrenia or Alzheimer's disease. However, its effect on Ca(2+) signaling and cell viability remains controversial. This study focuses on how the type II positive allosteric modulator (PAM II) PNU120596 affects intracellular Ca(2+) signaling and cell viability. We used human SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH). We monitored cytoplasmic and endoplasmic reticulum (ER) Ca(2+) with Fura-2 and the genetically encoded cameleon targeting the ER, respectively. Nicotinic inward currents were measured using patch-clamp techniques. Viability was assessed using methylthiazolyl blue tetrazolium bromide or propidium iodide staining. We observed that in the presence of a nicotinic agonist, PNU120596 (i) reduced viability of α7-SH but not of C-SH cells; (ii) significantly increased inward nicotinic currents and cytosolic Ca(2+) concentration; (iii) released Ca(2+) from the ER by a Ca(2+) -induced Ca(2+) release mechanism only in α7-SH cells; (iv) was cytotoxic in rat organotypic hippocampal slice cultures; and, lastly, all these effects were prevented by selective blockade of α7-nAChRs, ryanodine receptors, or IP3 receptors. In conclusion, positive allosteric modulation of α7-nAChRs with the PAM II PNU120596 can lead to dysregulation of ER Ca(2+) , overloading of intracellular Ca(2+) , and neuronal cell death. This study focuses on how the type II positive allosteric modulator PNU120596 (PAM II PNU12) affects intracellular Ca(2+) signaling and cell viability. Using SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH), we find that PAM of α7-nAChRs with PNU120596: (i) increases inward calcium current (ICa ) and cytosolic Ca(2+) concentration ([Ca(2+) ]cyt ); (ii) releases Ca(2+) from the ER ([Ca(2+) ]ER ) by a Ca(2+) -induced Ca(2+) release mechanism; and (iv) reduces cell viability. These findings were corroborated in rat hippocampal organotypic cultures. [Ca(2+) ]cyt , cytosolic Ca(2+) concentration; [Ca(2+) ]ER , endoplasmic reticulum Ca(2+) concentration; α7 nAChR, α7 isoform of nicotinic acetylcholine receptors; α7-SH, SH-SY5Y stably overexpressing α7 nAChRs cells; C-SH, control SH-SY5Y cells; Nic, nicotine; PNU12, PNU120596.
Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/fisiología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Humanos , Isoxazoles/farmacología , Masculino , Compuestos de Fenilurea/farmacología , Ratas , Ratas Sprague-DawleyRESUMEN
The modulation of N-methyl-D-aspartate receptor (NMDAR) and L-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and L-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/L-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), D-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), L-arginine (750 mg/kg, ip, NO precursor), SNAP (25 µg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by L-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.
Asunto(s)
Antidepresivos/farmacología , Arginina/metabolismo , Creatina/farmacología , Depresión/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Depresión/tratamiento farmacológico , Depresión/genética , Femenino , Suspensión Trasera , Humanos , Ratones , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Transducción de SeñalRESUMEN
Phosphodiesterase 5 (PDE5) inhibitors have recently been reported to exert beneficial effects against ischemia-reperfusion injury in several organs but their neuroprotective effects in brain stroke models are scarce. The present study was undertaken to assess the effects of sildenafil against cell death caused by intrastriatal injection of malonate, an inhibitor of succinate dehydrogenase; which produces both energy depletion and lesions similar to those seen in cerebral ischemia. Our data demonstrate that sildenafil (1.5mg/kg by mouth (p.o.)), given 30min before malonate (1.5µmol/2µL), significantly decreased the lesion volume caused by this toxin. This protective effect can be probably related to the inhibition of excitotoxic pathways. Thus, malonate induced the activation of the calcium-dependent protease, calpain and the cyclin-dependent kinase 5, cdk5; which resulted in the hyperphosphorylation of tau and the cleavage of the protective transcription factor, myocyte enhancer factor 2, MEF2. All these effects were also significantly reduced by sildenafil pre-treatment, suggesting that sildenafil protects against malonate-induced cell death through the regulation of the calpain/p25/cdk5 signaling pathway. Similar findings were obtained using inhibitors of calpain or cdk5, further supporting our contention. Sildenafil also increased MEF2 phosphorylation and Bcl-2/Bax and Bcl-xL/Bax ratios, effects that might as well contribute to prevent cell death. Finally, sildenafil neuroprotection was extended not only to rat hippocampal slices subjected to oxygen and glucose deprivation when added at the time of reoxygenation, but also, in vivo when administered after malonate injection. Thus, the therapeutic window for sildenafil against malonate-induced hypoxia was set at 3h.
Asunto(s)
Calpaína/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipoxia Encefálica , Malonatos/toxicidad , Fármacos Neuroprotectores/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Sulfonas/farmacología , Animales , Hipoxia Encefálica/inducido químicamente , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Hipoxia Encefálica/prevención & control , Masculino , Fosforilación/efectos de los fármacos , Purinas/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Citrato de Sildenafil , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Proteínas tau/metabolismoRESUMEN
Melatonin has been widely studied as a protective agent against oxidative stress. However, the molecular mechanisms underlying neuroprotection in neurodegeneration and ischemic stroke are not yet well understood. In this study, we evaluated the neuroprotective/antioxidant mechanism of action of melatonin in organotypic hippocampal cultures (OHCs) as well as in photothrombotic stroke model in vivo. Melatonin (0.1, 1, and 10 µM) incubated postoxygen and glucose deprivation (OGD) showed a concentration-dependent protection; maximum protection was achieved at 10 µM (90% protection). Next, OHCs were exposed to 10 µM melatonin at different post-OGD times; the protective effect of melatonin was maintained at 0, 1, and 2 hr post-OGD treatment, but it was lost at 6 hr post-OGD. The protective effect of melatonin and the reduction in OGD-induced ROS were prevented by luzindole (melatonin antagonist) and α-bungarotoxin (α-Bgt, a selective α7 nAChR antagonist). In Nrf2 knockout mice, the protective effect of melatonin was reduced by 40% compared with controls. Melatonin, incubated 0, 1, and 2 hr post-OGD, increased the expression of heme oxygenase-1 (HO-1), and this overexpression was prevented by luzindole and α-bungarotoxin. Finally, administration of 15 mg/kg melatonin following the induction of photothrombotic stroke in vivo, reduced infarct size (50%), and improved motor skills; this effect was partially lost in 0.1 mg/kg methyllycaconitine (MLA, selective α7 nAChR antagonist)-treated mice. Taken together, these results demonstrate that postincubation of melatonin provides a protective effect that, at least in part, depends on nicotinic receptor activation and overexpression of HO-1.
Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Isquemia/metabolismo , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Receptores Nicotínicos/metabolismo , Animales , Región CA1 Hipocampal/citología , Línea Celular Tumoral , Células Cultivadas , Glucosa/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxígeno/metabolismo , Trombosis/metabolismoRESUMEN
Eukaryotic cells and organisms depend on oxygen for basic living functions, and they display a panoply of adaptations to situations in which oxygen availability is diminished (hypoxia). A number of these responses in animals are mediated by changes in gene expression programs directed by hypoxia-inducible factors (HIFs), whose main mechanism of stabilization and functional activation in response to decreased cytosolic oxygen concentration was elucidated two decades ago. Human acute responses to hypoxia have been known for decades, although their precise molecular mechanism for oxygen sensing is not fully understood. It is already known that a redox component, linked with reactive oxygen species (ROS) production of mitochondrial origin, is implied in these responses. We have recently described a mechanism by which the mitochondrial sodium/calcium exchanger, NCLX, participates in mitochondrial electron transport chain regulation and ROS production in response to acute hypoxia. Here we show that NCLX is also implied in the response to hypoxia mediated by the HIFs. By using a NCLX inhibitor and interference RNA we show that NCLX activity is necessary for HIF-α subunits stabilization in hypoxia and for HIF-1-dependent transcriptional activity. We also show that hypoxic mitochondrial ROS production is not required for HIF-1α stabilization under all circumstances, suggesting that the basal cytosolic redox state or other mechanism(s) could be operating in the NCLX-mediated response to hypoxia that operates through HIF-α stabilization. This finding provides a link between acute and medium-term responses to hypoxia, reinforcing a central role of mitochondrial cell signalling in the response to hypoxia.
Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Mitocondrias , Especies Reactivas de Oxígeno , Intercambiador de Sodio-Calcio , Intercambiador de Sodio-Calcio/metabolismo , Intercambiador de Sodio-Calcio/genética , Humanos , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Hipoxia de la Célula , Animales , Oxidación-Reducción , Proteínas MitocondrialesRESUMEN
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Adipoquinas , Encéfalo/metabolismo , Tejido Adiposo/fisiología , Barrera Hematoencefálica/metabolismoRESUMEN
5-Methoxy-3-(5-methoxyindolin-2-yl)-1H-indole (3), whose structure was unambiguously elucidated by X-ray analysis, was identified as a multi-target compound with potential application in neurodegenerative diseases. It is a low nanomolar inhibitor of QR2 (IC50 = 7.7 nM), with greater potency than melatonin and comparable efficacy to the most potent QR2 inhibitors described to date. Molecular docking studies revealed the potential binding mode of 3 to QR2, which explains its superior potency compared to melatonin. Furthermore, compound 3 inhibits hMAO-A, hMAO-B and hLOX-5 in the low micromolar range and is an excellent ROS scavenger. In phenotypic assays, compound 3 showed neuroprotective activity in a cellular model of oxidative stress damage, it was non-toxic, and was able to activate neurogenesis from neural stem-cell niches of adult mice. These excellent biological properties, together with its both good in silico and in vitro drug-like profile, highlight compound 3 as a promising drug candidate for neurodegenerative diseases.