Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biol Chem ; 405(3): 161-165, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37552610

RESUMEN

The activity of neuronal Kv7.2/Kv7.3 channels is critically dependent on PIP2 and finely modulated by cholesterol. Here, we report the crosstalk between cholesterol and PIP2 in the regulation of Kv7.2/Kv7.3 channels. Our results show that currents passing through Kv7.2/Kv7.3 channels in cholesterol-depleted cells, by acute application of methyl-ß-cyclodextrin (MßCD), were less sensitive to PIP2 dephosphorylation strategies than those of control cells, suggesting that cholesterol depletion enhances the Kv7.2/Kv7.3-PIP2 interaction. In contrast, the sensitivity of Kv7.2/Kv7.3 channels to acute membrane cholesterol depletion by MßCD was not altered in mutant channels with different apparent affinities for PIP2.


Asunto(s)
Colesterol
2.
Pflugers Arch ; 470(12): 1765-1776, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30155776

RESUMEN

The acetylcholine (ACh)-gated inwardly rectifying K+ current (IKACh) plays a vital role in cardiac excitability by regulating heart rate variability and vulnerability to atrial arrhythmias. These crucial physiological contributions are determined principally by the inwardly rectifying nature of IKACh. Here, we investigated the relative contribution of two distinct mechanisms of IKACh inward rectification measured in atrial myocytes: a rapid component due to KACh channel block by intracellular Mg2+ and polyamines; and a time- and concentration-dependent mechanism. The time- and ACh concentration-dependent inward rectification component was eliminated when IKACh was activated by GTPγS, a compound that bypasses the muscarinic-2 receptor (M2R) and directly stimulates trimeric G proteins to open KACh channels. Moreover, the time-dependent component of IKACh inward rectification was also eliminated at ACh concentrations that saturate the receptor. These observations indicate that the time- and concentration-dependent rectification mechanism is an intrinsic property of the receptor, M2R; consistent with our previous work demonstrating that voltage-dependent conformational changes in the M2R alter the receptor affinity for ACh. Our analysis of the initial and time-dependent components of IKACh indicate that rapid Mg2+-polyamine block accounts for 60-70% of inward rectification, with M2R voltage sensitivity contributing 30-40% at sub-saturating ACh concentrations. Thus, while both inward rectification mechanisms are extrinsic to the KACh channel, to our knowledge, this is the first description of extrinsic inward rectification of ionic current attributable to an intrinsic voltage-sensitive property of a G protein-coupled receptor.


Asunto(s)
Potenciales de Acción , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Miocitos Cardíacos/metabolismo , Receptor Muscarínico M2/metabolismo , Acetilcolina/metabolismo , Animales , Gatos , Células Cultivadas , Femenino , Atrios Cardíacos/citología , Magnesio/metabolismo , Masculino , Miocitos Cardíacos/fisiología , Poliaminas/metabolismo
3.
Eur J Pharmacol ; 970: 176487, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38458411

RESUMEN

Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In this study, we have used the patch-clamp technique to assess the effects of sertraline on Kv2.1 channels heterologously expressed in HEK-293 cells and on the voltage-gated potassium currents (IKv) of Neuro 2a cells, which are predominantly mediated by Kv2.1 channels. Our results reveal that sertraline inhibits Kv2.1 channels in a concentration-dependent manner. The sertraline-induced inhibition was not voltage-dependent and did not require the channels to be open. The kinetics of activation and deactivation were accelerated and decelerated, respectively, by sertraline. Moreover, the inhibition by this drug was use-dependent. Notably, sertraline significantly modified the inactivation mechanism of Kv2.1 channels; the steady-state inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was enhanced and accelerated, and the recovery from inactivation was slowed, suggesting that this is the main mechanism by which sertraline inhibits Kv2.1 channels. Overall, this study provides novel insights into the pharmacological actions of sertraline on Kv2.1 channels, shedding light on the intricate interaction between SSRIs and ion channel function.


Asunto(s)
Sertralina , Canales de Potasio Shab , Humanos , Sertralina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Células HEK293 , Antidepresivos/farmacología , Potasio/metabolismo
4.
PLoS One ; 17(1): e0261960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030226

RESUMEN

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the 'relaxation' property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


Asunto(s)
Acetilcolina/farmacología , Agonistas del Receptor de Adenosina A1/farmacología , Adenosina/farmacología , Activación del Canal Iónico/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canales de Potasio/metabolismo , Receptor de Adenosina A1/metabolismo , Animales , Femenino , Cobayas , Masculino , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo
5.
Biochem Pharmacol ; 177: 113961, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272111

RESUMEN

It has been reported that muscarinic type-2 receptors (M2R) are voltage sensitive in an agonist-specific manner. In this work, we studied the effects of membrane potential on the interaction of M2R with the superagonist iperoxo (IXO), both functionally (using the activation of the ACh-gated K+ current (IKACh) in cardiomyocytes) and by molecular dynamics (MD) simulations. We found that IXO activated IKACh with remarkable high potency and clear voltage dependence, displaying a larger effect at the hyperpolarized potential. This result is consistent with a greater affinity, as validated by a slower (τ = 14.8 ± 2.3 s) deactivation kinetics of the IXO-evoked IKACh than that at the positive voltage (τ = 6.7 ± 1.2 s). The voltage-dependent M2R-IXO interaction induced IKACh to exhibit voltage-dependent features of this current, such as the 'relaxation gating' and the modulation of rectification. MD simulations revealed that membrane potential evoked specific conformational changes both at the external access and orthosteric site of M2R that underlie the agonist affinity change provoked by voltage on M2R. Moreover, our experimental data suggest that the 'tyrosine lid' (Y104, Y403, and Y426) is not the previously proposed voltage sensor of M2R. These findings provide an insight into the structural and functional framework of the biased signaling induced by voltage on GPCRs.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Isoxazoles/farmacología , Simulación de Dinámica Molecular , Compuestos de Amonio Cuaternario/farmacología , Receptor Muscarínico M2/fisiología , Acetilcolina/farmacología , Animales , Gatos , Células Cultivadas , Estimulación Eléctrica , Femenino , Activación del Canal Iónico/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Agonistas Muscarínicos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Conformación Proteica , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Xenopus laevis
6.
J Diabetes Res ; 2016: 8483537, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27191000

RESUMEN

According to the American Diabetes Association (ADA), the side effects of diabetes mellitus have recently increased the global health expenditure each year. Of these, the early diagnostic can contribute to the decrease on renal, cardiovascular, and nervous systems complications. However, the diagnostic criteria, which are commonly used, do not suggest the diabetes progress in the patient. In this study, the streptozotocin model in mice (cDM) was used as early diagnostic criterion to reduce the side effects related to the illness. The results showed some clinical signs similarly to five-year diabetes progress without renal injury, neuropathies, and cardiac neuropathy autonomic in the cDM-model. On the other hand, the electrocardiogram was used to determine alterations in heart rate and heart rate variability (HRV), using the Poincaré plot to quantify the HRV decrease in the cDM-model. Additionally, the SD1/SD2 ratio and ventricular arrhythmias showed increase without side effects of diabetes. Therefore, the use of HRV as an early biomarker contributes to evaluating diabetes mellitus complications from the diagnostic.


Asunto(s)
Complicaciones de la Diabetes/diagnóstico , Diabetes Mellitus Experimental/fisiopatología , Progresión de la Enfermedad , Frecuencia Cardíaca/fisiología , Animales , Biomarcadores , Complicaciones de la Diabetes/fisiopatología , Electrocardiografía , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA