RESUMEN
BACKGROUND: Intrauterine fetal demise is a recognized complication of coronavirus disease 2019 in pregnant women and is associated with histopathological placental lesions. The pathological mechanism and virus-induced immune response in the placenta are not fully understood. A detailed description of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced inflammation in the placenta during fetal demise is crucial for improved clinical management. CASE PRESENTATION: We report the case of a 27-week gestation SARS-CoV-2-asymptomatic unvaccinated pregnant woman without comorbidities or other risk factors for negative pregnancy outcomes with a diagnosis of intrauterine fetal demise. Histopathological findings corresponded to patterns of subacute inflammation throughout the anatomic compartments of the placenta, showing severe chorioamnionitis, chronic villitis and deciduitis, accompanied by maternal and fetal vascular malperfusion. Our immunohistochemistry results revealed infiltration of CD68+ macrophages, CD56+ Natural Killer cells and scarce CD8+ T cytotoxic lymphocytes at the site of placental inflammation, with the SARS-CoV-2 nucleocapsid located in stromal cells of the chorion and chorionic villi, and in decidual cells. CONCLUSION: This case describes novel histopathological lesions of inflammation with infiltration of plasma cells, neutrophils, macrophages, and natural killer cells associated with malperfusion in the placenta of a SARS-CoV-2-infected asymptomatic woman with intrauterine fetal demise. A better understanding of the inflammatory effects exerted by SARS-CoV-2 in the placenta will enable strategies for better clinical management of pregnant women unvaccinated for SARS-CoV-2 to avoid fatal fetal outcomes during future transmission waves.
Asunto(s)
COVID-19 , Muerte Fetal , Placenta , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Humanos , Femenino , Embarazo , COVID-19/complicaciones , COVID-19/inmunología , Muerte Fetal/etiología , Adulto , Placenta/patología , Placenta/virología , Corioamnionitis/patología , Inflamación , Células Asesinas Naturales/inmunologíaRESUMEN
We detected Leishmania RNA virus 1 (LRV1) in 11 isolates of Leishmania (Viannia) panamensis collected during 2014-2019 from patients from different geographic areas in Panama. The distribution suggested a spread of LRV1 in L. (V.) panamensis parasites. We found no association between LRV1 and an increase in clinical pathology.
Asunto(s)
Leishmania guyanensis , Leishmaniasis Cutánea , Leishmaniasis Mucocutánea , Leishmaniavirus , Humanos , Leishmania guyanensis/genética , Leishmaniasis Mucocutánea/epidemiología , Leishmaniavirus/genética , Panamá/epidemiologíaRESUMEN
Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.
Asunto(s)
Alphavirus , Culicidae , Dengue , Virus de la Encefalitis Equina del Este , Encefalomielitis Equina Oriental , Encefalomielitis Equina Venezolana , Humanos , Animales , Caballos/genética , Virus de la Encefalitis Equina del Este/genética , Encefalomielitis Equina Venezolana/diagnóstico , Encefalomielitis Equina Venezolana/epidemiología , Culicidae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Filogenia , Estudios Prospectivos , Vigilancia en Salud Pública , Estudios Retrospectivos , Alphavirus/genética , ARNRESUMEN
Parechovirus A (PeV-A, Parechovirus, Picornaviridae) are human pathogens associated with mild to severe gastrointestinal and respiratory diseases in young children. While several studies have investigated the association of PeV-A with human disease, little is known about its epidemiology or detection in Latin America. Between the years 2014 and 2015, a total of 200 samples were collected from Panamanian pediatric patients aged < 16 years old exhibiting symptoms associated with respiratory (n = 64), gastrointestinal (n = 68), or neurological (n = 68) diseases. These samples were gathered from patients who had previously received negative diagnoses for the main respiratory viruses, rotavirus, and neurological viruses like herpes virus, enterovirus, and cytomegalovirus. The presence of PeV-A was analyzed by real time RT-PCR.Eight positive PeV-A infections (4.0%, 95% CI: 1.7 to 7.7) were detected: two in respiratory samples (3.0%, 95% CI: 0.3 to 10.8), five in gastrointestinal samples (7.3%, 95% CI: 2.4 to 16.3), and one in cerebrospinal fluid (1.5%, 95% CI: 1.4 to 7.9). The study provides evidence of PeV-A circulation in Panama and the data collectively, remarked on the importance of considering PeV-A in the Panamanian pediatric diagnostic landscape, especially when conventional testing for more common viruses yields negative results.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Parechovirus , Infecciones por Picornaviridae , Picornaviridae , Humanos , Niño , Lactante , Preescolar , Adolescente , Parechovirus/genética , Infecciones por Picornaviridae/diagnóstico , Infecciones por Picornaviridae/epidemiología , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/epidemiología , Picornaviridae/genéticaRESUMEN
We report an epidemiologic analysis of 4,210 cases of infection with severe acute respiratory syndrome coronavirus 2 and genetic analysis of 313 new near-complete virus genomes in Panama during March 9-April 16, 2020. Although containment measures reduced R0 and Rt, they did not interrupt virus spread in the country.
Asunto(s)
Prueba de Ácido Nucleico para COVID-19/estadística & datos numéricos , COVID-19/transmisión , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Genoma Viral/genética , Vigilancia de la Población , SARS-CoV-2/genética , Adolescente , Adulto , Anciano , COVID-19/diagnóstico , COVID-19/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Panamá/epidemiología , Filogenia , Factores de Tiempo , Adulto JovenRESUMEN
An investigation in Panama found that Punta Toro virus species complex (PTVs) may contribute to febrile illnesses with symptoms mirroring those of dengue fever. However, further studies are needed to determine if PTV infection causes only a mild disease or if it can have more serious manifestations in some patients.
Asunto(s)
Infecciones por Bunyaviridae/diagnóstico , Infecciones por Bunyaviridae/virología , Fenotipo , Phlebovirus , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/historia , Estudios de Casos y Controles , Historia del Siglo XXI , Humanos , Panamá/epidemiología , Phlebovirus/clasificación , Phlebovirus/genética , Filogenia , Filogeografía , ARN Viral , Análisis de Secuencia de ADNRESUMEN
Some of the major arboviruses with public health importance, such as dengue, yellow fever, Zika and West Nile virus are mosquito-borne or mosquito-transmitted Flavivirus. Their principal vectors are from the family Culicidae, Aedes aegypti and Aedes albopictus being responsible of the urban cycles of dengue, Zika and yellow fever virus. These vectors are highly competent for transmission of many arboviruses. The genetic variability of the vectors, the environment and the viral diversity modulate the vector competence, in this context, it is important to determine which vector species is responsible of an outbreak in areas where many vectors coexist. As some vectors can transmit several flaviviruses and some flaviviruses can be transmitted by different species of vectors, through this review we expose importance of yellow fever, dengue and Zika virus in the world and the Americas, as well as the updated knowledge about these flaviviruses in their interaction with their mosquito vectors, guiding us on what is probably the beginning of a new stage in which the simultaneity of outbreaks will occur more frequently.
Asunto(s)
Culicidae/genética , Culicidae/virología , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/virología , Insectos Vectores/genética , Insectos Vectores/virología , Américas/epidemiología , Animales , Brotes de Enfermedades/estadística & datos numéricos , Enfermedades Endémicas/estadística & datos numéricos , Humanos , Incidencia , Factores de RiesgoRESUMEN
In Panama, human respiratory syncytial virus (HRSV) is responsible of 20-40% of acute respiratory infections in children under 5 years old. Currently, little is known about the genetic variability of HRSV in Central America and the Caribbean. Recently, we reported the genetic variability of HRSV-A, however; no studies on HRSV-B in Panama have been described yet. In this study, 24 sequences of Panamanian HRSV-B, from children (<5 years) with acute respiratory infections (ARI), collected from July 2008 to November 2012 were analyzed. All sequences share the characteristic 60-nt duplication of the BA strains. Six Panamanian strains grouped with the BA10 genotype and 12 samples clustered together in a separate monophyletic clade with an aLRT support value of 0.92 and an intra-group p-distance less than 0.07. This fulfills the criteria to consider a new genotype in HRSV, which we named BA14 genotype. Another six strains remain unclassified, but closely related to BA9, BA11, or the new BA14 genotypes, according to their genetic p-distance. Different amino acid substitutions in the Panamanian HRSV-B strains were observed, some previously described and others found only on Panamanian strains. This study contributes to the knowledge of the genetic variability and evolution of HRSV in Central America.
Asunto(s)
Variación Genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Preescolar , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Panamá/epidemiología , Filogenia , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones del Sistema Respiratorio/virología , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: The eastern equine encephalitis (EEE) and Venezuelan equine encephalitis (VEE) viruses are pathogens that infect humans and horses in the Americas. Outbreaks of neurologic disease in humans and horses were reported in Panama from May through early August 2010. METHODS: We performed antibody assays and tests to detect viral RNA and isolate the viruses in serum samples from hospitalized patients. Additional cases were identified with enhanced surveillance. RESULTS: A total of 19 patients were hospitalized for encephalitis. Among them, 7 had confirmed EEE, 3 had VEE, and 1 was infected with both viruses; 3 patients died, 1 of whom had confirmed VEE. The clinical findings for patients with EEE included brain lesions, seizures that evolved to status epilepticus, and neurologic sequelae. An additional 99 suspected or probable cases of alphavirus infection were detected during active surveillance. In total, 13 cases were confirmed as EEE, along with 11 cases of VEE and 1 case of dual infection. A total of 50 cases in horses were confirmed as EEE and 8 as VEE; mixed etiologic factors were associated with 11 cases in horses. Phylogenetic analyses of isolates from 2 cases of equine infection with the EEE virus and 1 case of human infection with the VEE virus indicated that the viruses were of enzootic lineages previously identified in Panama rather than new introductions. CONCLUSIONS: Cases of EEE in humans in Latin America may be the result of ecologic changes that increased human contact with enzootic transmission cycles, genetic changes in EEE viral strains that resulted in increased human virulence, or an altered host range. (Funded by the National Institutes of Health and the Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama.).
Asunto(s)
Brotes de Enfermedades , Virus de la Encefalitis Equina del Este , Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Oriental , Encefalomielitis Equina Venezolana , Adolescente , Animales , Anticuerpos Antivirales/sangre , Niño , Preescolar , Virus de la Encefalitis Equina del Este/genética , Virus de la Encefalitis Equina del Este/inmunología , Virus de la Encefalitis Equina del Este/aislamiento & purificación , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/inmunología , Virus de la Encefalitis Equina Venezolana/aislamiento & purificación , Encefalomielitis Equina Oriental/epidemiología , Encefalomielitis Equina Oriental/veterinaria , Encefalomielitis Equina Venezolana/epidemiología , Encefalomielitis Equina Venezolana/veterinaria , Resultado Fatal , Femenino , Enfermedades de los Caballos/epidemiología , Caballos , Humanos , Lactante , Masculino , Panamá/epidemiología , Filogenia , ARN Viral/sangreRESUMEN
During mouse cytomegalovirus (CMV) infection, a population of Ly49H(+) natural killer (NK) cells expands and is responsible for disease clearance through the induction of a "memory NK-cell response." Whether similar events occur in human CMV infection is unknown. In the present study, we characterized the kinetics of the NK-cell response to CMV reactivation in human recipients after hematopoietic cell transplantation. During acute infection, NKG2C(+) NK cells expanded and were potent producers of IFNγ. NKG2C(+) NK cells predominately expressed killer cell immunoglobulin-like receptor, and self-killer cell immunoglobulin-like receptors were required for robust IFNγ production. During the first year after transplantation, CMV reactivation induced a more mature phenotype characterized by an increase in CD56(dim) NK cells. Strikingly, increased frequencies of NKG2C(+) NK cells persisted and continued to increase in recipients who reactivated CMV, whereas these cells remained at low frequency in recipients without CMV reactivation. Persisting NKG2C(+) NK cells lacked NKG2A, expressed CD158b, preferentially acquired CD57, and were potent producers of IFNγ during the first year after transplantation. Recipients who reactivated CMV also expressed higher amounts of IFNγ, T-bet, and IL-15Rα mRNA transcripts. Our findings support the emerging concept that CMV-induced innate memory-cell populations may contribute to malignant disease relapse protection and infectious disease control long after transplantation.
Asunto(s)
Antígenos CD57/metabolismo , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Biomarcadores/metabolismo , Western Blotting , Estudios de Cohortes , Infecciones por Citomegalovirus/terapia , Trasplante de Células Madre Hematopoyéticas , Humanos , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores KIR/genética , Receptores KIR/metabolismo , Receptores KIR2DL2/genética , Receptores KIR2DL2/metabolismo , Receptores KIR2DL3/genética , Receptores KIR2DL3/metabolismo , Trasplante Homólogo , Replicación ViralRESUMEN
Natural killer (NK) cells are innate lymphocytes that play an important role against viral infections and cancer. This effect is achieved through a complex mosaic of inhibitory and activating receptors expressed by NK cells that ultimately determine the magnitude of the NK-cell response. The T-cell immunoglobulin- and mucin domain-containing (Tim)-3 receptor was initially identified as a T-helper 1-specific type I membrane protein involved in regulating T-cell responses. Human NK cells transcribe the highest amounts of Tim-3 among lymphocytes. Tim-3 protein is expressed on essentially all mature CD56(dim)CD16(+) NK cells and is expressed heterogeneously in the immature CD56(bright)CD16(-) NK-cell subset in blood from healthy adults and in cord blood. Tim-3 expression was induced on CD56(bright)CD16(-) NK cells after stimulation with IL-15 or IL-12 and IL-18 in vitro, suggesting that Tim-3 is a maturation marker on NK cells. Whereas Tim-3 has been used to identify dysfunctional T cells, NK cells expressing high amounts of Tim-3 are fully responsive with respect to cytokine production and cytotoxicity. However, when Tim-3 was cross-linked with antibodies it suppressed NK cell-mediated cytotoxicity. These findings suggest that NK-cell responses may be negatively regulated when NK cells encounter target cells expressing cognate ligands of Tim-3.
Asunto(s)
Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Proteínas de la Membrana/inmunología , Linfocitos T Citotóxicos/inmunología , Biomarcadores/metabolismo , Antígeno CD56/inmunología , Antígeno CD56/metabolismo , Diferenciación Celular/inmunología , Línea Celular , Reactivos de Enlaces Cruzados/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Inmunofenotipificación , Células Asesinas Naturales/citología , Ligandos , Subgrupos Linfocitarios/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Linfocitos T Citotóxicos/citología , Regulación hacia Arriba/inmunologíaRESUMEN
During human CMV infection, there is a preferential expansion of natural killer (NK) cells expressing the activating CD94-NKG2C receptor complex, implicating this receptor in the recognition of CMV-infected cells. We hypothesized that NK cells expanded in response to pathogens will be marked by expression of CD57, a carbohydrate antigen expressed on highly mature cells within the CD56(dim)CD16(+) NK cell compartment. Here we demonstrate the preferential expansion of a unique subset of NK cells coexpressing the activating CD94-NKG2C receptor and CD57 in CMV(+) donors. These CD57(+)NKG2C(hi) NK cells degranulated in response to stimulation through their NKG2C receptor. Furthermore, CD57(+)NKG2C(hi) NK cells preferentially lack expression of the inhibitory NKG2A receptor and the inhibitory KIR3DL1 receptor in individuals expressing its HLA-Bw4 ligand. Moreover, in solid-organ transplant recipients with active CMV infection, the percentage of CD57(+)NKG2C(hi) NK cells in the total NK cell population preferentially increased. During acute CMV infection, the NKG2C(+) NK cells proliferated, became NKG2C(hi), and finally acquired CD57. Thus, we propose that CD57 might provide a marker of "memory" NK cells that have been expanded in response to infection.
Asunto(s)
Antígenos CD57/inmunología , Proliferación Celular , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Enfermedad Aguda , Biomarcadores/metabolismo , Antígeno CD56/inmunología , Antígeno CD56/metabolismo , Antígenos CD57/biosíntesis , Degranulación de la Célula/inmunología , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Regulación de la Expresión Génica/inmunología , Antígenos HLA-B/inmunología , Antígenos HLA-B/metabolismo , Humanos , Memoria Inmunológica , Células Asesinas Naturales/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/biosíntesis , Trasplante de Órganos , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Receptores KIR3DL1/inmunología , Receptores KIR3DL1/metabolismo , Donantes de Tejidos , Trasplante HomólogoRESUMEN
Panama is a country with endemic Dengue virus (DENV) transmission since its reintroduction in 1993. The four serotypes have circulated in the country and the region of the Americas, however, DENV-4 confirmed autochthonous cases have not been identified since 2000, despite its circulation in neighboring countries. Here, we report DENV-4 detection in Panama in the last four-month period of 2023 with co-circulation of the other serotypes, this was associated with a peak of dengue cases during the dry season even though most dengue outbreaks are described in the rainy season. Complete genomes of DENV-4 allowed us to determine that cases were caused by DENV-4 genotype IIb, the same genotype as 23 years ago, with high similarity to DENV-4 sequences circulating in Nicaragua and El Salvador during 2023. This report shows the importance of maintaining serotype and genotype surveillance for early detection of new variants circulating in the country.
Asunto(s)
Virus del Dengue , Dengue , Genoma Viral , Genotipo , Filogenia , Serogrupo , Virus del Dengue/genética , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Panamá/epidemiología , Dengue/epidemiología , Dengue/virología , Humanos , Genoma Viral/genética , ARN Viral/genética , Estaciones del Año , Brotes de Enfermedades , Nicaragua/epidemiologíaRESUMEN
Background: At the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, transfusion of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) emerged as a potential therapeutic strategy to help patients severely afflicted by COVID-19. The efficacy of CCP has been controversial as it depends on many variables pertaining to the plasma donor and the patient with COVID-19, for example, time of convalescence or symptoms onset. This feasibility and descriptive study aimed to assess the safety of multiple doses of CCP in mechanically ventilated, intubated patients with respiratory failure due to COVID-19. Methods: A cohort of 30 patients all experiencing severe respiratory failure and undergoing invasive mechanical ventilation in an intensive care unit, received up to five doses of 300-600 mL of CCP on alternate days (0, 2, 4, 6, and 8) until extubation, futility, or death. Results: Nineteen patients received five doses, seven received four, and four received two or three doses. At 28-day follow-up mark, 57% of patients recovered and were sent home, and the long-term mortality rate was 27%. Ten severe adverse events reported in the study were unrelated to CCP transfusion. Independent of the number of transfused doses, most patients had detectable levels of total and neutralizing antibodies in plasma. Conclusion: This study suggests that transfusion of multiple doses of CCP is safe. This strategy may represent a viable option for future studies, given the potential benefit of CCP transfusions during the early stages of infection in unvaccinated populations and in settings where monoclonal antibodies or antivirals are contraindicated or unavailable.
RESUMEN
Madariaga virus (MADV) and Venezuelan equine encephalitis virus (VEEV) are emerging arboviruses affecting rural and remote areas of Latin America. However, there are limited clinical and epidemiological reports available, and outbreaks are occurring at an increasing frequency. We addressed this gap by analyzing all the available clinical and epidemiological data of MADV and VEEV infections recorded since 1961 in Panama. A total of 168 of human alphavirus encephalitis cases were detected in Panama from 1961 to 2023. Here we describe the clinical signs and symptoms and epidemiological characteristics of these cases, and also explored signs and symptoms as potential predictors of encephalitic alphavirus infection when compared to those of other arbovirus infections occurring in the region. Our results highlight the challenges clinical diagnosis of alphavirus disease in endemic regions with overlapping circulation of multiple arboviruses.
RESUMEN
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes acute, subacute, and chronic human arthritogenic diseases and, in rare instances, can lead to neurological complications and death. Here, we combined epidemiological, virological, histopathological, cytokine, molecular dynamics, metabolomic, proteomic, and genomic analyses to investigate viral and host factors that contribute to chikungunya-associated (CHIK) death. Our results indicate that CHIK deaths are associated with multi-organ infection, central nervous system damage, and elevated serum levels of pro-inflammatory cytokines and chemokines compared with survivors. The histopathologic, metabolite, and proteomic signatures of CHIK deaths reveal hemodynamic disorders and dysregulated immune responses. The CHIKV East-Central-South-African lineage infecting our study population causes both fatal and survival cases. Additionally, CHIKV infection impairs the integrity of the blood-brain barrier, as evidenced by an increase in permeability and altered tight junction protein expression. Overall, our findings improve the understanding of CHIK pathophysiology and the causes of fatal infections.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Fiebre Chikungunya/complicaciones , Proteómica , Virus Chikungunya/genética , Citocinas/metabolismoRESUMEN
BACKGROUND: A subset of CD3(neg)CD56(neg)CD16⺠Natural Killer (NK) cells is highly expanded during chronic HIV-1 infection. The role of this subset in HIV-1 pathogenesis remains unclear. The lack of NK cell lineage-specific markers has complicated the study of minor NK cell subpopulations. RESULTS: Using CD7 as an additional NK cell marker, we found that CD3(neg)CD56(neg)CD16⺠cells are a heterogeneous population comprised of CD7⺠NK cells and CD7(neg) non-classical myeloid cells. CD7âºCD56(neg)CD16⺠NK cells are significantly expanded in HIV-1 infection. CD7âºCD56(neg)CD16⺠NK cells are mature and express KIRs, the C-type lectin-like receptors NKG2A and NKG2C, and natural cytotoxicity receptors similar to CD7âºCD56âºCD16⺠NK cells. CD7âºCD56(neg) NK cells in healthy donors produced minimal IFNγ following K562 target cell or IL-12 plus IL-18 stimulation; however, they degranulated in response to K562 stimulation similar to CD7âºCD56⺠NK cells. HIV-1 infection resulted in reduced IFNγ secretion following K562 or cytokine stimulation by both NK cell subsets compared to healthy donors. Decreased granzyme B and perforin expression and increased expression of CD107a in the absence of stimulation, particularly in HIV-1-infected subjects, suggest that CD7âºCD56(neg)CD16⺠NK cells may have recently engaged target cells. Furthermore, CD7âºCD56(neg)CD16⺠NK cells have significantly increased expression of CD95, a marker of NK cell activation. CONCLUSIONS: Taken together, CD7âºCD56(neg)CD16⺠NK cells are activated, mature NK cells that may have recently engaged target cells.
Asunto(s)
Antígeno CD56/análisis , Infecciones por VIH/inmunología , VIH-1/inmunología , Células Asesinas Naturales/química , Células Asesinas Naturales/inmunología , Receptores de IgG/análisis , Antígenos CD7/análisis , Proteínas Ligadas a GPI/análisis , Granzimas/biosíntesis , Voluntarios Sanos , Humanos , Interferón gamma/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/análisis , Perforina/biosíntesisRESUMEN
Immunological memory is a hallmark of the adaptive immune system. However, the ability to remember and respond more robustly against a second encounter with the same pathogen has been described in organisms lacking T and B cells. Recently, NK cells have been shown to mediate Ag-specific recall responses in several different model systems. Although NK cells do not rearrange the genes encoding their activating receptors, NK cells experience a selective education process during development, undergo a clonal-like expansion during virus infection, generate long-lived progeny (i.e., memory cells), and mediate more efficacious secondary responses against previously encountered pathogens--all characteristics previously ascribed only to T and B cells in mammals. This review describes past findings leading up to these new discoveries, summarizes the evidence for and characteristics of NK cell memory, and discusses the attempts and future challenges to identify these long-lived memory NK cell populations in humans.
Asunto(s)
Memoria Inmunológica , Células Asesinas Naturales/inmunología , Inmunidad Adaptativa , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Inmunoterapia Adoptiva , Células Asesinas Naturales/patología , Células Asesinas Naturales/virología , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patologíaRESUMEN
Hepatitis E Virus (HEV) infection is an emergent zoonotic disease of increasing concern in developed regions. HEV genotype 3 (HEV-3) is mainly transmitted through consumption of contaminated food in high-income countries and is classified into at least 13 subtypes (3a-3n), based on p-distance values from complete genomes. In Latin America, HEV epidemiology studies are very scant. Our group has previously detected HEV3 in clinical cases, swine, wild boars, captive white-collared peccaries, and spotted deer from Uruguay. Herein, we aimed to provide novel insights and an updated overview of the molecular epidemiology of zoonotic HEV in Uruguay, including data from wastewater-based surveillance studies. A thorough analysis of HEV whole genomes and partial ORF2 sequences from Uruguayan human and domestic pig strains showed that they formed a separate monophyletic cluster with high nucleotide identity and exhibited p-distance values over the established cut-off (0.093) compared with reference subtypes' sequences. Furthermore, we found an overall prevalence of 10.87% (10/92) in wastewater, where two samples revealed a close relationship with humans, and animal reservoirs/hosts isolates from Uruguay. In conclusion, a single, new HEV-3 subtype currently circulates in different epidemiological settings in Uruguay, and we propose its designation as 3o along with its reference sequence.
Asunto(s)
Ciervos , Virus de la Hepatitis E , Hepatitis E , Enfermedades de los Porcinos , Porcinos , Animales , Humanos , Virus de la Hepatitis E/genética , Hepatitis E/epidemiología , Hepatitis E/veterinaria , Uruguay/epidemiología , Filogenia , Genotipo , Ciervos/genética , Sus scrofa/genética , Monitoreo del Ambiente , ARN Viral/genéticaRESUMEN
Macrophages are among the major targets of HIV-1 infection and play a key role in viral pathogenesis. Identification of the cellular cofactors involved in the production of infectious HIV-1 from macrophages is thus crucial. Here, we investigated the role of the cellular cofactor TIP47 in HIV-1 morphogenesis in primary macrophages. Using siRNA approach, we show that TIP47 is essential for HIV-1 infectivity and propagation. TIP47 silencing disrupts Gag and Env colocalization in macrophages. Moreover, mutations in HIV-1 Gag or Env, which abolish interaction with TIP47, impair HIV-1 propagation and infectivity preventing colocalization of Gag and Env, Gag and Env coimmunoprecipitation. Interestingly, disruption of Gag-TIP47 interaction by matrix mutation or TIP47 depletion also causes Gag to localize in scattered dots in the vicinity of the plasma membrane of macrophages. Therefore, TIP47 is required for the encounter between Gag and Env, and thus for the generation of infectious HIV-1 particles from primary macrophages.