Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Circ Res ; 133(7): 592-610, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37641931

RESUMEN

BACKGROUND: Activation of immune-inflammatory pathways involving TNFα (tumor necrosis factor alpha) signaling is critical for revascularization and peripheral muscle tissue repair after ischemic injury. However, mechanisms of TNFα-driven inflammatory cascades directing recruitment of proangiogenic immune cells to sites of ischemia are unknown. METHODS: Muscle tissue revascularization after permanent femoral artery ligation was monitored in mutant mice by laser Doppler imaging and light sheet fluorescence microscopy. TNFα-mediated signaling and the role of the CCL20 (C-C motif chemokine ligand 20)-CCR6 (C-C chemokine receptor 6) axis for formation of new vessels was studied in vitro and in vivo using bone marrow transplantation, flow cytometry, as well as biochemical and molecular biological techniques. RESULTS: TNFα-mediated activation of TNFR (tumor necrosis factor receptor) 1 but not TNFR2 was found to be required for postischemic muscle tissue revascularization. Bone marrow-derived CCR6+ neutrophil granulocytes were identified as a previously undescribed TNFα-induced population of proangiogenic neutrophils, characterized by increased expression of VEGFA (vascular endothelial growth factor A). Mechanistically, postischemic activation of TNFR1 induced expression of the CCL20 in vascular cells and promoted translocation of the CCL20 receptor CCR6 to the cell surface of neutrophils, essentially conditioning VEGFA-expressing proangiogenic neutrophils for CCL20-dependent recruitment to sites of ischemia. Moreover, impaired revascularization of ischemic peripheral muscle tissue in diabetic mice was associated with reduced numbers of proangiogenic neutrophils and diminished CCL20 expression. Administration of recombinant CCL20 enhanced recruitment of proangiogenic neutrophils and improved revascularization of diabetic ischemic skeletal muscles, which was sustained by sequential treatment with fluvastatin. CONCLUSIONS: We demonstrate that site-specific activation of the CCL20-CCR6 axis via TNFα recruits proangiogenic VEGFA-expressing neutrophils to sites of ischemic injury for initiation of muscle tissue revascularization. The findings provide an attractive option for tissue revascularization, particularly under diabetic conditions.


Asunto(s)
Diabetes Mellitus Experimental , Neutrófilos , Animales , Ratones , Receptores CCR6/genética , Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular , Procedimientos Quirúrgicos Vasculares
2.
Eur Respir J ; 57(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33184116

RESUMEN

The aim of our study was to analyse the protein expression of cartilage intermediate layer protein (CILP)1 in a mouse model of right ventricular (RV) pressure overload and to evaluate CILP1 as a biomarker of cardiac remodelling and maladaptive RV function in patients with pulmonary hypertension (PH).Pulmonary artery banding was performed in 14 mice; another nine mice underwent sham surgery. CILP1 protein expression was analysed in all hearts using Western blotting and immunostaining. CILP1 serum concentrations were measured in 161 patients (97 with adaptive and maladaptive RV pressure overload caused by PH; 25 with left ventricular (LV) hypertrophy; 20 with dilative cardiomyopathy (DCM); 19 controls without LV or RV abnormalities)In mice, the amount of RV CILP1 was markedly higher after banding than after sham. Control patients had lower CILP1 serum levels than all other groups (p<0.001). CILP1 concentrations were higher in PH patients with maladaptive RV function than those with adaptive RV function (p<0.001), LV pressure overload (p<0.001) and DCM (p=0.003). CILP1 showed good predictive power for maladaptive RV in receiver operating characteristic analysis (area under the curve (AUC) 0.79). There was no significant difference between the AUCs of CILP1 and N-terminal pro-brain natriuretic peptide (NT-proBNP) (AUC 0.82). High CILP1 (cut-off value for maladaptive RV of ≥4373 pg·mL-1) was associated with lower tricuspid annular plane excursion/pulmonary artery systolic pressure ratios (p<0.001) and higher NT-proBNP levels (p<0.001).CILP1 is a novel biomarker of RV and LV pathological remodelling that is associated with RV maladaptation and ventriculoarterial uncoupling in patients with PH.


Asunto(s)
Hipertensión Pulmonar , Disfunción Ventricular Derecha , Animales , Biomarcadores , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Ratones , Función Ventricular Derecha
3.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008777

RESUMEN

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) signaling protects the heart after myocardial infarction (MI). In mice, oncostatin M receptor (OSMR) and leukemia inhibitory factor receptor (LIFR) are selectively activated by the respective cognate ligands while OSM activates both the OSMR and LIFR in humans, which prevents efficient translation of mouse data into potential clinical applications. We used an engineered human-like OSM (hlOSM) protein, capable to signal via both OSMR and LIFR, to evaluate beneficial effects on cardiomyocytes and hearts after MI in comparison to selective stimulation of either LIFR or OSMR. Cell viability assays, transcriptome and immunoblot analysis revealed increased survival of hypoxic cardiomyocytes by mLIF, mOSM and hlOSM stimulation, associated with increased activation of STAT3. Kinetic expression profiling of infarcted hearts further specified a transient increase of OSM and LIF during the early inflammatory phase of cardiac remodeling. A post-infarction delivery of hlOSM but not mOSM or mLIF within this time period combined with cardiac magnetic resonance imaging-based strain analysis uncovered a global cardioprotective effect on infarcted hearts. Our data conclusively suggest that a simultaneous and rapid activation of OSMR and LIFR after MI offers a therapeutic opportunity to preserve functional and structural integrity of the infarcted heart.


Asunto(s)
Cardiotónicos/metabolismo , Infarto del Miocardio/prevención & control , Oncostatina M/metabolismo , Receptores OSM-LIF/metabolismo , Animales , Hipoxia de la Célula/genética , Supervivencia Celular , Células Cultivadas , Humanos , Cinética , Factor Inhibidor de Leucemia/metabolismo , Ratones , Contracción Miocárdica , Infarto del Miocardio/genética , Miocitos Cardíacos/metabolismo , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Oncostatina M/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Especificidad de la Especie , Transcriptoma/genética
4.
Int J Mol Sci ; 21(9)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397496

RESUMEN

Swiprosin-1 (EFhD2) is a molecule that triggers structural adaptation of isolated adult rat cardiomyocytes to cell culture conditions by initiating a process known as cell spreading. This process mimics central aspects of cardiac remodeling, as it occurs subsequent to myocardial infarction. However, expression of swiprosin-1 in cardiac tissue and its regulation in vivo has not yet been addressed. The expression of swiprosin-1 was analyzed in mice, rat, and pig hearts undergoing myocardial infarction or ischemia/reperfusion with or without cardiac protection by ischemic pre- and postconditioning. In mouse hearts, swiprosin-1 protein expression was increased after 4 and 7 days in myocardial infarct areas specifically in cardiomyocytes as verified by immunoblotting and histology. In rat hearts, swiprosin-1 mRNA expression was induced within 7 days after ischemia/reperfusion but this induction was abrogated by conditioning. As in cultured cardiomyocytes, the expression of swiprosin-1 was associated with a coinduction of arrestin-2, suggesting a common mechanism of regulation. Rno-miR-32-3p and rno-miR-34c-3p were associated with the regulation pattern of both molecules. Moreover, induction of swiprosin-1 and ssc-miR-34c was also confirmed in the infarct zone of pigs. In summary, our data show that up-regulation of swiprosin-1 appears in the postischemic heart during cardiac remodeling and repair in different species.


Asunto(s)
Remodelación Atrial/genética , Proteínas de Unión al Calcio/biosíntesis , Regulación de la Expresión Génica , Precondicionamiento Isquémico Miocárdico , Proteínas de Microfilamentos/biosíntesis , Infarto del Miocardio/genética , Daño por Reperfusión/genética , Remodelación Ventricular/genética , Animales , Remodelación Atrial/fisiología , Proteínas de Unión al Calcio/genética , Células Cultivadas , Ratones , MicroARNs/biosíntesis , MicroARNs/genética , Proteínas de Microfilamentos/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Daño por Reperfusión/metabolismo , Porcinos , Remodelación Ventricular/fisiología , beta-Arrestina 1/biosíntesis , beta-Arrestina 1/genética
5.
J Biol Chem ; 293(52): 20181-20199, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30373773

RESUMEN

The pleiotropic interleukin-6 (IL-6)-type cytokine oncostatin M (OSM) signals in multiple cell types, affecting processes such as cell differentiation, hematopoiesis, and inflammation. In humans, OSM exerts its effects through activation of either of two different heterodimeric receptor complexes, formed by glycoprotein 130 (gp130) and either OSM receptor (OSMR) or leukemia inhibitory factor receptor (LIFR). In contrast, the mouse OSM orthologue acts mainly through dimers containing OSMR and gp130 and shows limited activity through mouse LIFR. Despite their structural similarity, neither human nor mouse OSM signal through the other species' OSMR. The molecular basis for such species-specific signaling, however, remains poorly understood. To identify key molecular features of OSM that determine receptor activation in humans and mice, we generated chimeric mouse-human cytokines. Replacing regions within binding site III of murine OSM with the human equivalents showed that the cytokine's AB loop was critical for receptor selection. Substitutions of individual amino acids within this region demonstrated that residues Asn-37, Thr-40, and Asp-42 of the murine cytokine were responsible for limited LIFR activation and absence of human OSMR/LIFR signaling. In human OSM, Lys-44 appeared to be the main residue preventing mouse OSMR activation. Our data reveal that individual amino acids within the AB loop of OSM determine species-specific activities. These mutations might reflect a key step in the evolutionary process of this cytokine, in which receptor promiscuity gives way to ligand-receptor specialization.


Asunto(s)
Oncostatina M/metabolismo , Transducción de Señal , Animales , Línea Celular , Humanos , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Ratones , Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/metabolismo , Multimerización de Proteína/genética , Estructura Secundaria de Proteína , Especificidad de la Especie
6.
J Biol Chem ; 293(18): 7017-7029, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29511087

RESUMEN

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are closely related members of the interleukin-6 (IL-6) cytokine family. Both cytokines share a common origin and structure, and both interact through a specific region, termed binding site III, to activate a dimeric receptor complex formed by glycoprotein 130 (gp130) and LIF receptor (LIFR) in humans. However, only OSM activates the OSM receptor (OSMR)-gp130 complex. The molecular features that enable OSM to specifically activate the OSMR are currently unknown. To define specific sequence motifs within OSM that are critical for initiating signaling via OSMR, here we generated chimeric OSM-LIF cytokines and performed alanine-scanning experiments. Replacement of the OSM AB loop within OSM's binding site III with that of LIF abrogated OSMR activation, measured as STAT3 phosphorylation at Tyr-705, but did not compromise LIFR activation. Correspondingly, substitution of the AB loop and D-helix in LIF with their OSM counterparts was sufficient for OSMR activation. The alanine-scanning experiments revealed that residues Tyr-34, Gln-38, Gly-39, and Leu-45 (in the AB loop) and Pro-153 (in the D-helix) had specific roles in activating OSMR but not LIFR signaling, whereas Leu-40 and Cys-49 (in the AB loop), and Phe-160 and Lys-163 (in the D-helix) were required for activation of both receptors. Because most of the key amino acid residues identified here are conserved between LIF and OSM, we concluded that comparatively minor differences in a few amino acid residues within binding site III account for the differential biological effects of OSM and LIF.


Asunto(s)
Subunidad beta del Receptor de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Sitios de Unión , Receptor gp130 de Citocinas/metabolismo , Citocinas/metabolismo , Humanos , Factor Inhibidor de Leucemia/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Mutagénesis Sitio-Dirigida , Oncostatina M/química , Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/química , Subunidad beta del Receptor de Oncostatina M/genética , Fosforilación , Unión Proteica , Receptores OSM-LIF/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
7.
Basic Res Cardiol ; 109(1): 396, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24292852

RESUMEN

Heart failure (HF) is a common and potentially deadly condition, which frequently develops as a consequence of various diseases of the heart. The incidence of heart failure continuously increases in aging societies illustrating the need for new therapeutic approaches. We recently discovered that continuous activation of oncostatin M (OSM), a cytokine of the interleukin-6 family that induces dedifferentiation of cardiomyocytes, promotes progression of heart failure in dilative cardiomyopathy. To evaluate whether inhibition of OSM signaling represents a meaningful therapeutic approach to prevent heart failure we attenuated OSM-receptor (Oß) signaling in a mouse model of inflammatory dilative cardiomyopathy. We found that administration of an antibody directed against the extracellular domain of Oß or genetic inactivation of a single allele of the Oß gene reduced cardiomyocyte remodeling and dedifferentiation resulting in improved cardiac performance and increased survival. We conclude that pharmacological attenuation of long-lasting Oß signaling is a promising strategy to treat different types and stages of HF that go along with infiltration by OSM-releasing inflammatory cells.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Cardiomiopatía Dilatada/metabolismo , Subunidad beta del Receptor de Oncostatina M/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Western Blotting , Desdiferenciación Celular , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Humanos , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Arterioscler Thromb Vasc Biol ; 31(10): 2297-305, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21737786

RESUMEN

OBJECTIVE: Collateral artery growth or arteriogenesis is the primary means of the circulatory system to maintain blood flow in the face of major arterial occlusions. Arteriogenesis depends on activation of fibroblast growth factor (FGF) receptors, but relatively little is known about downstream mediators of FGF signaling. METHODS AND RESULTS: We screened for signaling components that are activated in response to administration of FGF-2 to cultured vascular smooth muscle cells (VSMCs) and detected a significant increase of Rap2 but not of other Ras family members, which corresponded to a strong upregulation of Rap2 and C-Raf in growing collaterals from rabbits with femoral artery occlusion. Small interfering RNAs directed against Rap2 did not affect FGF-2 induced proliferation of VSMC but strongly inhibited their migration. Inhibition of FGF receptor-1 (FGFR1) signaling by infusion of a sulfonic acid polymer or infection with a dominant-negative FGFR1 adenovirus inhibited Rap2 upregulation and collateral vessel growth. Similarly, expression of dominant-negative Rap2 blocked arteriogenesis, whereas constitutive active Rap2 enhanced collateral vessel growth. CONCLUSIONS: Rap2 is part of the arteriogenic program and acts downstream of the FGFR1 to stimulate VSMC migration. Specific modulation of Rap2 might be an attractive target to manipulate VSMC migration, which plays a role in numerous pathological processes.


Asunto(s)
Arteriopatías Oclusivas/metabolismo , Movimiento Celular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica , Proteínas de Unión al GTP rap/metabolismo , Animales , Arteriopatías Oclusivas/genética , Arteriopatías Oclusivas/patología , Arteriopatías Oclusivas/fisiopatología , Proliferación Celular , Circulación Colateral , Modelos Animales de Enfermedad , Arteria Femoral/metabolismo , Arteria Femoral/patología , Arteria Femoral/fisiopatología , Arteria Femoral/cirugía , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Ligadura , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Interferencia de ARN , Conejos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Flujo Sanguíneo Regional , Factores de Tiempo , Transfección , Proteínas de Unión al GTP rap/genética
9.
J Vis Exp ; (143)2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30688304

RESUMEN

The goal of this protocol encompasses the design of chimeric proteins in which distinct regions of a protein are replaced by their corresponding sequences in a structurally similar protein, in order to determine the functional importance of these regions. Such chimeras are generated by means of a nested PCR protocol using overlapping DNA fragments and adequately designed primers, followed by their expression within a mammalian system to ensure native secondary structure and post-translational modifications. The functional role of a distinct region is then indicated by a loss of activity of the chimera in an appropriate readout assay. In consequence, regions harboring a set of critical amino acids are identified, which can be further screened by complementary techniques (e.g. site-directed mutagenesis) to increase molecular resolution. Although limited to cases in which a structurally related protein with differing functions can be found, chimeric proteins have been successfully employed to identify critical binding regions in proteins such as cytokines and cytokine receptors. This method is particularly suitable in cases in which the protein's functional regions are not well defined, and constitutes a valuable first step in directed evolution approaches to narrow down the regions of interest and reduce the screening effort involved.


Asunto(s)
Quimerismo , Cartilla de ADN/genética , Dominios Proteicos/genética
11.
Nat Commun ; 10(1): 2312, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127113

RESUMEN

Cardioprotection by salvage of the infarct-affected myocardium is an unmet yet highly desired therapeutic goal. To develop new dedicated therapies, experimental myocardial ischemia/reperfusion (I/R) injury would require methods to simultaneously characterize extent and localization of the damage and the ensuing inflammatory responses in whole hearts over time. Here we present a three-dimensional (3D), simultaneous quantitative investigation of key I/R injury-components by combining bleaching-augmented solvent-based non-toxic clearing (BALANCE) using ethyl cinnamate (ECi) with light sheet fluorescence microscopy. This allows structural analyses of fluorescence-labeled I/R hearts with exceptional detail. We discover and 3D-quantify distinguishable acute and late vascular I/R damage zones. These contain highly localized and spatially structured neutrophil infiltrates that are modulated upon cardiac healing. Our model demonstrates that these characteristic I/R injury patterns can detect the extent of damage even days after the ischemic index event hence allowing the investigation of long-term recovery and remodeling processes.


Asunto(s)
Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Miocardio/patología , Animales , Biopsia , Cinamatos/química , Puente de Arteria Coronaria , Modelos Animales de Enfermedad , Humanos , Sustancias Luminiscentes/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente/métodos , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/cirugía , Miocardio/citología , Miocardio/inmunología , Neutrófilos/inmunología , Proteína Fluorescente Roja
12.
Int J Cardiol ; 258: 7-13, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29544958

RESUMEN

BACKGROUND: Regenerating islet-derived protein 3 beta (Reg3ß) is a cardiomyocyte-derived chemokine for macrophages that is upregulated after myocardial infarction (MI) in mice. Here, we hypothesized that monitoring Reg3ß expression might provide specific information on the degree of cardiac inflammation, which is a key determinant in disease progression and prognosis of patients with acute coronary syndrome (ACS). METHODS AND RESULTS: The expression of Reg3ß and other inflammatory markers including C-reactive protein (CRP) and myeloperoxidase (MPO) was measured by immunoblotting at serial time points in the hearts and serum of mice with acute MI. We identified a rapid increase of Reg3ß, CRP and MPO expression in cardiac tissue and serum within the first 24 h after MI. The expression of Reg3ß peaked at day 4 and thereby paralleled the kinetic profile of the early immune-inflammatory response at sites of cardiac injury, which has been characterized by multicolor flow cytometry. In a retrospective analysis including 322 ACS patients and 117 apparently healthy individuals, we detected increased Reg3ß serum concentrations in ACS patients on admission by ELISA. Multiple regression analysis revealed significant relationships between Reg3ß and hs-CRP, age, diabetes and NT-proBNP in ACS. Moreover, elevated Reg3ß levels on admission were associated with an increased risk of death independent of cardiovascular risk factors and hs-CRP. CONCLUSIONS: Reg3ß is a prognostic biomarker for ACS and is strongly associated with the intensity of cardiac inflammation. Accordingly, Reg3ß may complement established strategies of acute risk assessment in the management of ACS.


Asunto(s)
Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/fisiopatología , Proteínas Asociadas a Pancreatitis/sangre , Síndrome Coronario Agudo/diagnóstico , Adulto , Animales , Biomarcadores/sangre , Estudios de Cohortes , Electrocardiografía/tendencias , Femenino , Estudios de Seguimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pronóstico
13.
Cardiovasc Res ; 114(12): 1667-1679, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850784

RESUMEN

Aims: Myocardial infarction (MI) causes a massive increase of macrophages in the heart, which serve various non-redundant functions for cardiac repair. The identities of signals controlling recruitment of functionally distinct cardiac macrophages to sites of injury are only partially known. Previous work identified Regenerating islet-derived protein 3 beta (Reg3ß) as a novel factor directing macrophages to sites of myocardial injury. Herein, we aim to characterize functionally distinct macrophage subsets and understand the impact of different members of the Reg protein family including Reg3ß, Reg3γ, and Reg4 on their accumulation in the infarcted heart. Methods and results: We have determined dynamic changes of three phenotypically distinct tissue macrophage subpopulations in the mouse heart after MI by flow cytometry. RNA sequencing and bioinformatics analysis identified inflammatory gene expression patterns in MHC-IIhi/Ly6Clo and MHC-IIlo/Ly6Clo cardiac tissue macrophages while Ly6Chi cardiac tissue macrophages are characterized by gene activities associated with healing and revascularization of damaged tissue. Loss- and gain-of-function experiments revealed specific roles of Reg proteins for recruitment of cardiac tissue macrophage subpopulations to the site of myocardial injury. We found that expression of Reg3ß, Reg3γ, and Reg4 is strongly increased after MI in mouse and human hearts with Reg3ß providing the lead, followed by Reg3γ and Reg4. Inactivation of the Reg3ß gene prevented the increase of all types of cardiac tissue macrophages shortly after MI whereas local delivery of Reg3ß, Reg3γ, and Reg4 selectively stimulated recruitment of MHC-IIhi/Ly6Clo and MHC-IIlo/Ly6Clo but repressed accumulation of Ly6Chi cardiac tissue macrophages. Conclusion: We conclude that distinct cardiac macrophage subpopulations are characterized by substantially different gene expression patterns reflecting their pathophysiological role after MI. We argue that sequential, local production of Reg proteins orchestrates accumulation of macrophage subsets, which seem to act in a parallel or partially overlapping rather than in a successive manner.


Asunto(s)
Quimiotaxis , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Asociadas a Pancreatitis/metabolismo , Animales , Antígenos Ly/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Proteínas de Neoplasias/genética , Subunidad beta del Receptor de Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/metabolismo , Proteínas Asociadas a Pancreatitis/deficiencia , Proteínas Asociadas a Pancreatitis/genética , Fenotipo , Ratas Sprague-Dawley , Transducción de Señal
14.
Nat Med ; 21(4): 353-62, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25751817

RESUMEN

Cardiac healing after myocardial ischemia depends on the recruitment and local expansion of myeloid cells, particularly macrophages. Here we identify Reg3ß as an essential regulator of macrophage trafficking to the damaged heart. Using mass spectrometry-based secretome analysis, we found that dedifferentiating cardiomyocytes release Reg3ß in response to the cytokine OSM, which signals through Jak1 and Stat3. Loss of Reg3ß led to a large decrease in the number of macrophages in the ischemic heart, accompanied by increased ventricular dilatation and insufficient removal of neutrophils. This defect in neutrophil removal in turn caused enhanced matrix degradation, delayed collagen deposition and increased susceptibility to cardiac rupture. Our data indicate that OSM, acting through distinct intracellular pathways, regulates both cardiomyocyte dedifferentiation and cardiomyocyte-dependent regulation of macrophage trafficking. Release of OSM from infiltrating neutrophils and macrophages initiates a positive feedback loop in which OSM-induced production of Reg3ß in cardiomyocytes attracts additional OSM-secreting macrophages. The activity of the feedback loop controls the degree of macrophage accumulation in the heart, which is instrumental in myocardial healing.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Isquemia Miocárdica/patología , Miocardio/patología , Oncostatina M/metabolismo , Proteínas/metabolismo , Animales , Antígenos de Neoplasias/genética , Biomarcadores de Tumor/genética , Colágeno/metabolismo , Electroforesis en Gel Bidimensional , Femenino , Corazón/fisiología , Ventrículos Cardíacos/metabolismo , Inflamación , Interleucina-6/metabolismo , Lectinas Tipo C/genética , Macrófagos/citología , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Proteínas Asociadas a Pancreatitis , Proteínas/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal
15.
Cell Cycle ; 11(3): 439-45, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22262173

RESUMEN

Dedifferentiation is a common phenomenon among plants but has only been found rarely in vertebrates where it is mostly associated with regenerative responses such as formation of blastemae in amphibians to initiate replacement of lost body parts. Relatively little attention has been paid to dedifferentiation processes in mammals although a decline of differentiated functions and acquisition of immature, "embryonic" properties is seen in various disease processes. Dedifferentiation of parenchymal cells in mammals might serve multiple purposes including (1) facilitation of tissue regeneration by generation of progenitor-like cells and (2) protection of cells from hypoxia by reduction of ATP consumption due to changes in energy metabolism and/or inactivation of energy-intensive "specialized" functions. We recently found that an inflammatory cytokine of the interleukin 6 family, oncostatin M (OSM), initiates dedifferentiation of cardiomyocytes both in vitro and in vivo. Interestingly, activation of the OSM signaling pathway protects the heart from acute myocardial ischemia but has a negative impact when continuously activated thereby promoting dilative cardiomyopathy. The strong presence of the OSM receptor on cardiomyocytes and the unique features of the OSM signaling circuit suggest a major role of OSM for cardiac protection and repair. We propose that continuous activation or malfunctions of the cellular dedifferentiation machinery might contribute to different disease conditions.


Asunto(s)
Miocitos Cardíacos/citología , Receptores de Oncostatina M/metabolismo , Animales , Antineoplásicos/farmacología , Cardiomiopatías/etiología , Diferenciación Celular/efectos de los fármacos , Humanos , Isquemia Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oncostatina M/farmacología , Receptores de Oncostatina M/química , Regeneración/fisiología , Transducción de Señal/efectos de los fármacos
16.
Cell Stem Cell ; 9(5): 420-32, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22056139

RESUMEN

Cardiomyocyte remodeling, which includes partial dedifferentiation of cardiomyocytes, is a process that occurs during both acute and chronic disease processes. Here, we demonstrate that oncostatin M (OSM) is a major mediator of cardiomyocyte dedifferentiation and remodeling during acute myocardial infarction (MI) and in chronic dilated cardiomyopathy (DCM). Patients suffering from DCM show a strong and lasting increase of OSM expression and signaling. OSM treatment induces dedifferentiation of cardiomyocytes and upregulation of stem cell markers and improves cardiac function after MI. Conversely, inhibition of OSM signaling suppresses cardiomyocyte remodeling after MI and in a mouse model of DCM, resulting in deterioration of heart function after MI but improvement of cardiac performance in DCM. We postulate that dedifferentiation of cardiomyocytes initially protects stressed hearts but fails to support cardiac structure and function upon continued activation. Manipulation of OSM signaling provides a means to control the differentiation state of cardiomyocytes and cellular plasticity.


Asunto(s)
Desdiferenciación Celular , Miocitos Cardíacos/patología , Oncostatina M/metabolismo , Remodelación Ventricular/fisiología , Animales , Biomarcadores/metabolismo , Western Blotting , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Cardiotónicos/metabolismo , Ciclo Celular/efectos de los fármacos , Desdiferenciación Celular/efectos de los fármacos , ADN/biosíntesis , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Pruebas de Función Cardíaca/efectos de los fármacos , Humanos , Ratones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oncostatina M/farmacología , Subunidad beta del Receptor de Oncostatina M/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA