Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Nat Prod ; 82(5): 1240-1249, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30964667

RESUMEN

Different positive pharmacological effects have been attributed to the natural product resveratrol (RSV), including antioxidant, antiaging, and cancer chemopreventive properties. However, its low bioavailability and rapid metabolic degradation has led to the suspicion that many of the biological activities of this compound observed in vitro may not be attainable in humans. To improve its bioavailability and pharmacokinetic profile, attempts have been made to encapsulate RSV into lipid-based nanocarrier systems. Here, the dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) liposomal system (1:2) loaded with RSV revealed appropriate characteristics for drug release purposes: reduced size for cellular uptake (157 ± 23 nm), stability up to 80 days, positive surface charge (ζ ≈ +40 mV), and a controlled biphasic release of RSV from the lipid nanocarriers over a period of almost 50 h at pH 5.0 and 7.4. Moreover, the encapsulation efficiency of the nanocarrier ranged from 70% to 92% and its RSV loading capacity from 9% to 14%, when [RSV] was between 100 and 200 µM. The partition coefficient ( Kp) of RSV between lipid and aqueous phase was log Kp = 3.37 ± 0.10, suggesting moderate to high lipophilicity of this natural compound and reinforcing the lipid nanocarriers' suitability for RSV incorporation. The thermodynamic parameters of RSV partitioning in the lipid nanocarriers at 37 °C (Δ H = 43.76 ± 5.68 kJ mol-1; Δ S = 0.20 ± 0.005 kJ mol-1; and Δ G = -18.46 ± 3.48 kJ mol-1) reflected the spontaneity of the process and the establishment of hydrophobic interactions. The cellular uptake mechanism of the RSV-loaded nanocarriers labeled with the lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was studied in the eukaryotic model system Saccharomyces cerevisiae. Thirty minutes after incubation, yeast cells readily internalized nanocarriers and the spots of blue fluorescence of DPH clustered around the central vacuole in lipid droplets colocalized with the green fluorescence of the lipophilic endocytosis probe FM1-43. Subsequent studies with the endocytosis defective yeast deletion mutant ( end3Δ) and with the endocytosis inhibitor methyl-ß-cyclodextrin supported the involvement of an endocytic pathway. This novel nanotechnology approach opens good perspectives for medical applications.


Asunto(s)
Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Endocitosis/efectos de los fármacos , Resveratrol/administración & dosificación , Resveratrol/farmacocinética , Saccharomyces cerevisiae/metabolismo , Disponibilidad Biológica , Portadores de Fármacos , Composición de Medicamentos , Estabilidad de Medicamentos , Liposomas , Mutación , Nanoestructuras , Saccharomyces cerevisiae/genética
2.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384433

RESUMEN

Diclofenac (DCF), the most widely consumed non-steroidal anti-inflammatory drug (NSAID) worldwide, is associated with adverse typical effects, including gastrointestinal (GI) complications. The present study aims to better understand the topical toxicity induced by DCF using membrane models that mimic the physiological, biophysical, and chemical environments of GI mucosa segments. For this purpose, phospholipidic model systems that mimic the GI protective lining and lipid models of the inner mitochondrial membrane were used together with a wide set of techniques: derivative spectrophotometry to evaluate drug distribution at the membrane; steady-state and time-resolved fluorescence to predict drug location at the membrane; fluorescence anisotropy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and calcein leakage studies to evaluate the drug-induced disturbance on membrane microviscosity and permeability; and small- and wide-angle X-ray scattering studies (SAXS and WAXS, respectively), to evaluate the effects of DCF at the membrane structure. Results demonstrated that DCF interacts chemically with the phospholipids of the GI protective barrier in a pH-dependent manner and confirmed the DCF location at the lipid headgroup region, as well as DCF's higher distribution at mitochondrial membrane contact points where the impairment of biophysical properties is consistent with the uncoupling effects reported for this drug.


Asunto(s)
Diclofenaco/efectos adversos , Mucosa Gástrica , Mucosa Intestinal , Modelos Biológicos , Fosfolípidos , Biofisica , Diclofenaco/farmacología , Fluoresceínas/química , Fluoresceínas/metabolismo , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Humanos , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Fosfolípidos/química , Fosfolípidos/metabolismo
3.
Biochim Biophys Acta ; 1828(2): 896-905, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23022131

RESUMEN

This work focuses on the interaction of mycolic acids (MAs) and two antimycobacterial compounds (Rifabutin and N'-acetyl-Rifabutin) at the pulmonary membrane level to convey a biophysical perspective of their role in disease. For this purpose, accurate biophysical techniques (Langmuir isotherms, Brewster angle microscopy, and polarization-modulation infrared reflection spectroscopy) and lipid model systems were used to mimic biomembranes: MAs mimic bacterial lipids of the Mycobacterium tuberculosis (MTb) membrane, whereas Curosurf® was used as the human pulmonary surfactant (PS) membrane model. The results obtained show that high quantities of MAs are responsible for significant changes on PS biophysical properties. At the dynamic inspiratory surface tension, high amounts of MAs decrease the order of the lipid monolayer, which appears to be a concentration dependent effect. These results suggest that the amount of MAs might play a critical role in the initial access of the bacteria to their targets. Both molecules also interact with the PS monolayer at the dynamic inspiratory surface. However, in the presence of higher amounts of MAs, both compounds improve the phospholipid packing and, therefore, the order of the lipid surfactant monolayer. In summary, this work discloses the putative protective effects of antimycobacterial compounds against the MAs induced biophysical impairment of PS lipid monolayers. These protective effects are most of the times overlooked, but can constitute an additional therapeutic value in the treatment of pulmonary tuberculosis (Tb) and may provide significant insights for the design of new and more efficient anti-Tb drugs based on their behavior as membrane ordering agents.


Asunto(s)
Antibacterianos/farmacología , Biofisica/métodos , Membrana Celular/química , Ácidos Micólicos/química , Surfactantes Pulmonares/química , 1,2-Dipalmitoilfosfatidilcolina/química , Antituberculosos/farmacología , Productos Biológicos/farmacología , Células Epiteliales/citología , Humanos , Lípidos/química , Modelos Químicos , Mycobacterium tuberculosis/metabolismo , Fosfatidilserinas/química , Fosfolípidos/farmacología , Alveolos Pulmonares/citología , Rifabutina/farmacología , Espectrofotometría/métodos , Propiedades de Superficie , Tensoactivos/química
4.
Biochim Biophys Acta ; 1828(8): 1899-908, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23590997

RESUMEN

Menadione (MEN), a polycyclic aromatic ketone, was shown to promote cell injury by imposing massive oxidative stress and has been proposed as a promising chemotherapeutic agent for the treatment of cancer diseases. The mechanisms underlying MEN-induced mitochondrial dysfunction and cell death are not yet fully understood. In this work, a systematic study was performed to unveil the effects of MEN on membrane lipid organization, using models mimicking mitochondrial membranes and native mitochondrial membranes. MEN was found to readily incorporate in membrane systems composed of a single phospholipid (phosphatidylcholine) or the lipids dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and tetraoleoylcardiolipin at 1:1:1 molar ratio, as well as in mitochondrial membranes. Increased permeability in both membrane models, monitored by calcein release, seemed to correlate with the extent of MEN incorporation into membranes. MEN perturbed the physical properties of vesicles composed of dipalmitoylphosphatidylcholine or dipalmitoylphosphatidylethanolamine plus tetraoleoylcardiolipin (at 7:3 molar ratio), as reflected by the downshift of the lipid phase transition temperature and the emergence of a new transition peak in the mixed lipid system, detected by DSC. (31)P NMR studies revealed that MEN favored the formation of non-lamellar structures. Also, quenching studies with the fluorescent probes DPH and TMA-DPH showed that MEN distributed across the bilayer thickness in both model and native mitochondrial membranes. MEN's ability to promote alterations of membrane lipid organization was related with its reported mitochondrial toxicity and promotion of apoptosis, predictably involved in its anti-carcinogenic activity.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Membranas Artificiales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosfatidiletanolaminas/metabolismo , Vitamina K 3/metabolismo , Biofisica , Rastreo Diferencial de Calorimetría , Permeabilidad de la Membrana Celular , Fluoresceínas/metabolismo , Fluorescencia , Humanos , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Mitocondrias/química , Membranas Mitocondriales/química , Fosfatidiletanolaminas/química , Espectrofotometría , Vitamina K 3/química
5.
Pharmaceutics ; 16(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931927

RESUMEN

The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.

6.
Eur J Pharm Sci ; 196: 106758, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570054

RESUMEN

Increasing evidence suggests a beneficial role of vitamin D (VitD) supplementation in addressing the widespread VitD deficiency, but currently used VitD3 formulations present low bioavailability and toxicity constrains. Hence, poly(L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), solid-lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were investigated to circumvent these issues. PLGA NPs prepared by emulsification or nanoprecipitation presented 74 or 200 nm, and association efficiency (AE) of 68 % and 17 %, respectively, and a rapid burst release of VitD3. Both SLN and NLCs presented higher polydispersity and larger NPs size, around 500 nm, which could be reduced to around 200 nm by use of hot high-pressure homogenization in the case of NLCs. VitD3 was efficiently loaded in both SLNs and NLCs with an AE of 82 and 99 %, respectively. While SLNs showed burst release, NLCs allowed a sustained release of VitD3 for nearly one month. Furthermore, NLCs showed high stability with maintenance of VitD3 loading for up to one month at 4 °C and no cytotoxic effects on INS-1E cells up to 72 h. A trending increase (around 30 %) on glucose-dependent insulin secretion was observed by INS-1E cells pre-treated with VitD3. This effect was consistently observed in the free form and after loading on NLCs. Overall, this work contributed to further elucidation on a suitable delivery system for VitD3 and on the effects of this metabolite on ß cell function.

7.
Adv Drug Deliv Rev ; 210: 115321, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38679293

RESUMEN

Posterior eye disorders, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, have a significant impact on human quality of life and are the primary cause of age-related retinal diseases among adults. There is a pressing need for innovative topical approaches to treat posterior eye disorders, as current methods often rely on invasive procedures with inherent risks. Limited success was attained in the realm of topical ophthalmic delivery through non-invasive means. Additionally, there exists a dearth of literature that delves into the potential of this approach for drug delivery and theranostic purposes, or that offers comprehensive design strategies for nanocarrier developers to surmount the significant physiological ocular barriers. This review offers a thorough and up-to-date state-of-the-art overview of 40 studies on therapeutic loaded nanocarriers and theranostic devices that, to the best of our knowledge, represent all successful works that reached posterior eye segments through a topical non-invasive administration. Most importantly, based on the successful literature studies, this review provides a comprehensive summary of the potential design strategies that can be implemented during nanocarrier development to overcome each ocular barrier.


Asunto(s)
Portadores de Fármacos , Nanomedicina Teranóstica , Humanos , Portadores de Fármacos/química , Nanomedicina Teranóstica/métodos , Nanopartículas , Animales , Sistemas de Liberación de Medicamentos , Oftalmopatías/tratamiento farmacológico , Administración Oftálmica , Administración Tópica
8.
Biochim Biophys Acta ; 1818(3): 877-88, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22230348

RESUMEN

The present work aims to gain insights into the role of peptide-lipid interactions in the mechanisms of cellular internalization and endosomal escape of the S4(13)-PV cell-penetrating peptide, which has been successfully used in our laboratory as a nucleic acid delivery system. A S4(13)-PV analogue, S4(13)-PVscr, displaying a scrambled amino acid sequence, deficient cell internalization and drug delivery inability, was used in this study for comparative purposes. Differential scanning calorimetry, fluorescence polarization and X-ray diffraction at small and wide angles techniques showed that both peptides interacted with anionic membranes composed of phosphatidylglycerol or a mixture of this lipid with phosphatidylethanolamine, increasing the lipid order, shifting the phase transition to higher temperatures and raising the correlation length between the bilayers. However, S4(13)-PVscr, in contrast to the wild-type peptide, did not promote lipid domain segregation and induced the formation of an inverted hexagonal lipid phase instead of a cubic phase in the lipid systems assayed. Electron microscopy showed that, as opposed to S4(13)-PVscr, the wild-type peptide induced the formation of a non-lamellar organization in membranes of HeLa cells. We concluded that lateral phase separation and destabilization of membrane lamellar structure without compromising membrane integrity are on the basis of the lipid-driven and receptor-independent mechanism of cell entry of S4(13)-PV peptide. Overall, our results can contribute to a better understanding of the role of peptide-lipid interactions in the mechanisms of cell-penetrating peptide membrane translocation, helping in the future design of more efficient cell-penetrating peptide-based drug delivery systems.


Asunto(s)
Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Membrana Dobles de Lípidos/química , Péptidos/química , Péptidos/farmacocinética , Membrana Celular/química , Membrana Celular/ultraestructura , Péptidos de Penetración Celular/farmacología , Sistemas de Liberación de Medicamentos/métodos , Células HeLa , Humanos , Membrana Dobles de Lípidos/metabolismo , Péptidos/farmacología , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo
9.
Chemphyschem ; 14(12): 2808-16, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23821530

RESUMEN

This work focuses on the influence of rifabutin and two novel analogs, namely, N'-acetyl-rifabutin and N'-butanoyl-rifabutin, on the biophysical properties of lipid membranes. Monolayers and multilamellar vesicles composed of egg L-α-phosphatidylcholine:cholesterol in a molar ratio of 4:1 are chosen to mimic biological membranes. Several accurate biophysical techniques are used to establish a putative relationship between the chemical structure of the antimycobacterial compounds and their activity on the membranes. A combination of in situ experimental techniques, such as Langmuir isotherms, Brewster angle microscopy, polarization-modulated infrared reflection-absorption spectroscopy, and small-angle X-ray scattering, is used to assess the drug-membrane interaction. A relationship between the effect of a drug on the organization of the membranes and their chemical structure is found and may be useful in the development of new drugs with higher efficacy and fewer toxic effects.


Asunto(s)
Membranas Artificiales , Rifabutina/análogos & derivados , Antibacterianos/química , Colesterol/química , Módulo de Elasticidad , Fosfatidilcolinas/química , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X
10.
Pharmaceutics ; 15(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36839648

RESUMEN

Current needs for increased drug delivery carrier efficacy and specificity in cancer necessitate the adoption of intelligent materials that respond to environmental stimuli. Therefore, we developed and optimized pH-triggered drug delivery nanoassemblies that exhibit an increased release of doxorubicin (DOX) in acidic conditions typical of cancer tissues and endosomal vesicles (pH 5.5) while exhibiting significantly lower release under normal physiological conditions (pH 7.5), indicating the potential to reduce cytotoxicity in healthy cells. The hybrid (polymeric/lipid) composition of the lyotropic non-lamellar liquid crystalline (LNLCs) nanoassemblies demonstrated high encapsulation efficiency of the drug (>90%) and high drug loading content (>7%) with colloidal stability lasting at least 4 weeks. Confocal microscopy revealed cancer cellular uptake and DOX-loaded LNLCs accumulation near the nucleus of human hepatocellular carcinoma cells, with a large number of cells appearing to be in apoptosis. DOX-loaded LNLCs have also shown higher citotoxicity in cancer cell lines (MDA-MB 231 and HepG2 cell lines after 24 h and in NCI-H1299 cell line after 48 h) when compared to free drug. After 24 h, free DOX was found to have higher cytotoxicity than DOX-loaded LNLCs and empty LNLCs in the normal cell line. Overall, the results demonstrate that DOX-loaded LNLCs have the potential to be explored in cancer therapy.

11.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189011, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37923232

RESUMEN

Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.


Asunto(s)
Cristales Líquidos , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Cristales Líquidos/química
12.
Pharmaceutics ; 15(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111802

RESUMEN

Cancer is one of the leading causes of death, and latest predictions indicate that cancer- related deaths will increase over the next few decades. Despite significant advances in conventional therapies, treatments remain far from ideal due to limitations such as lack of selectivity, non-specific distribution, and multidrug resistance. Current research is focusing on the development of several strategies to improve the efficiency of chemotherapeutic agents and, as a result, overcome the challenges associated with conventional therapies. In this regard, combined therapy with natural compounds and other therapeutic agents, such as chemotherapeutics or nucleic acids, has recently emerged as a new strategy for tackling the drawbacks of conventional therapies. Taking this strategy into consideration, the co-delivery of the above-mentioned agents in lipid-based nanocarriers provides some advantages by improving the potential of the therapeutic agents carried. In this review, we present an analysis of the synergistic anticancer outcomes resulting from the combination of natural compounds and chemotherapeutics or nucleic acids. We also emphasize the importance of these co-delivery strategies when reducing multidrug resistance and adverse toxic effects. Furthermore, the review delves into the challenges and opportunities surrounding the application of these co-delivery strategies towards tangible clinical translation for cancer treatment.

13.
Pharmaceutics ; 15(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37631292

RESUMEN

Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.

14.
J Control Release ; 349: 731-743, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905784

RESUMEN

Colorectal cancer (CRC) is a heterogeneous disease with high incidence and mortality worldwide. The efficacy of conventional CRC chemotherapy is hampered by poor drug solubility and bioavailability and suboptimal pharmacokinetic profiles. In this work, camptothecin (CPT), a potent anticancer drug, was loaded into an amphiphilic chitosan modified with PEG and oleic acid, to reduce CRC progression after oral administration. While CPT-loaded micelles presented anticancer activity against HCT116, Caco-2 and HT29 CRC cell lines in vitro, empty micelles demonstrated a safe profile when incubated with human blood cells and colorectal cancer cell lines. In a more complex 3D CRC multicellular spheroid model, CPT-loaded micelles also exhibited a significant effect on the spheroid's metabolic activity and size reduction. Remarkably, in vivo studies performed in a HCT116 xenograft model, showed a significant reduction on the tumor growth during and after treatment with CPT-loaded micelles. Moreover, in a more biological relevant in vivo model of chemically-induced CRC, orally administered CPT-loaded micelles demonstrated a significant reduction on tumor incidence and inflammation signs. The findings here reported indicate that CPT-loaded into chitosan-based micelles, by improving drug solubility, alongside its safety profile for normal tissues, may have a promising role CRC chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos , Antineoplásicos , Quitosano , Neoplasias Colorrectales , Antineoplásicos/uso terapéutico , Células CACO-2 , Camptotecina , Línea Celular Tumoral , Quitosano/uso terapéutico , Neoplasias Colorrectales/patología , Portadores de Fármacos/uso terapéutico , Humanos , Micelas , Ácido Oléico
15.
J Bioenerg Biomembr ; 43(3): 287-98, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21607731

RESUMEN

FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), a classical uncoupler of mitochondrial oxidative phosphorylation, is used in this study as a model to clarify how interactions of uncouplers with membrane lipid bilayers may influence membrane biophysics and their protonophoric activity itself. In order to disclose putative effects that may be important when considering using uncouplers for pharmacological purposes, an extensive characterization of FCCP membrane lipid interactions using accurate biophysical approaches and simple model lipid systems was carried out. Differential scanning calorimetry studies showed that FCCP molecules disturb lipid bilayers and favor lateral phase separation in mixed lipid systems. (31)P NMR assays indicated that FCCP alters the curvature elastic properties of membrane models containing non-bilayer lipids, favoring lamellar/H(II) transition, probably by alleviation of hydrocarbon-packing constraints in the inverted hexagonal phase. Taking advantage of FCCP quenching effects on the fluorescent probes DPH (1,6-diphenyl-1,3,5-hexatriene) and DPH-PA (3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid), it is demonstrated that FCCP distributes across the bilayer thickness in both a single and a ternary lipid system mimicking the inner mitochondrial membrane. This behavior is consistent with the ability of the compound to migrate through the thickness of the inner mitochondrial membrane, an event required for its protonophoric activity. Finally, the study of the membrane fluidity in different lipid systems, as reported by the rotational correlation time (θ) of DPH or DPH-PA, showed that the extension at which FCCP disturbs membrane properties associated with the dynamics and the order of lipid molecules depends on the lipid composition of the model lipid system assayed.


Asunto(s)
Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Lípidos de la Membrana/química , Mitocondrias/química , Carbonil Cianuro m-Clorofenil Hidrazona/química , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Humanos , Fluidez de la Membrana , Lípidos de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
16.
Langmuir ; 27(17): 10847-58, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21790169

RESUMEN

This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Polarización de Fluorescencia/métodos , Membrana Dobles de Lípidos/química , Liposomas/química , Anisotropía , Concentración de Iones de Hidrógeno , Estructura Molecular
17.
Pharmaceutics ; 13(6)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204692

RESUMEN

Camptothecin (CPT) is a potent anticancer drug, and its putative oral administration is envisioned although difficult due to physiological barriers that must be overcome. A comprehensive biophysical analysis of CPT interaction with biointerface models can be used to predict some pharmacokinetic issues after oral administration of this or other drugs. To that end, different models were used to mimic the phospholipid composition of normal, cancer, and blood-brain barrier endothelial cell membranes. The logD values obtained indicate that the drug is well distributed across membranes. CPT-membrane interaction studies also confirm the drug's location at the membrane cooperative and interfacial regions. The drug can also permeate membranes at more ordered phases by altering phospholipid packing. The similar logD values obtained in membrane models mimicking cancer or normal cells imply that CPT has limited selectivity to its target. Furthermore, CPT binds strongly to serum albumin, leaving only 8.05% of free drug available to be distributed to the tissues. The strong interaction with plasma proteins, allied to the large distribution (VDSS = 5.75 ± 0.932 L·Kg-1) and tendency to bioaccumulate in off-target tissues, were predicted to be pharmacokinetic issues of CPT, implying the need to develop drug delivery systems to improve its biodistribution.

18.
Pharmaceutics ; 13(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34452255

RESUMEN

Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.

19.
Pharmaceutics ; 13(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34452163

RESUMEN

Resveratrol (RSV) and omega 3 (ω3), because of their biological favorable properties, have become subjects of interest for researchers in dermocosmetic and pharmaceutical industries; however, these bioactives present technological limitations that hinder their effective delivery to the target skin layer. To overcome the stability and skin permeation limitations of free bioactives, this work proposes a combined strategy involving two different lipid nanosystems (liposomes and lipid nanoparticles) that include ω3 in their lipid matrix. Additionaly, RSV is only encapsulated in liposomes that provid an adequate amphiphilic environment. Each formulation is thoroughly characterized regarding their physical-chemical properties. Subsequently, the therapeutic performance of the lipid nanosystems is evaluated based on their protective roles against lipid peroxidation, as well as inhibition of cicloxygenase (COX) and nitric oxid (NO) production in the RWA264.7 cell line. Finally, the lipid nanosystems are incorporated in hydrogel to allow their topical administration, then rheology, occlusion, and RSV release-diffusion assays are performed. Lipid nanoparticles provide occlusive effects at the skin surface. Liposomes provide sustained RSV release and their flexibility conferred by edge activator components enhances RSV diffusion, which is required to reach NO production cells and COX cell membrane enzymes. Overall, the inclusion of both lipid nanosystems in the same semisolid base constitutes a promising strategy for autoimmune, inflammatory, and cancerous skin diseases.

20.
J Control Release ; 334: 453-462, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33961916

RESUMEN

Women are particularly vulnerable to sexual HIV-1 transmission. Oral pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) is highly effective in avoiding new infections in men, but protection has only been shown to be moderate in women. Such differences have been associated, at least partially, to poor drug penetration of the lower female genital tract and the need for strict adherence to continuous daily oral intake of TDF/FTC. On-demand topical microbicide products could help circumvent these limitations. We developed electrospun fibers based on polycaprolactone (PCL fibers) or liposomes associated to poly(vinyl alcohol) (liposomes-in-PVA fibers) for the vaginal co-delivery of TDF and FTC, and assessed their pharmacokinetics in mice. PCL fibers and liposomes-in-PVA fibers were tested for morphological and physicochemical properties using scanning electron microscopy, differential scanning calorimetry and X-ray diffractometry. Fibers featured organoleptic and mechanical properties compatible with their suitable handling and vaginal administration. Fluorescent quenching of mucin in vitro - used as a proxy for mucoadhesion - was intense for PCL fibers, but mild for liposomes-in-PVA fibers. Both fibers were shown safe in vitro and able to rapidly release drug content (15-30 min) under sink conditions. Liposomes-in-PVA fibers allowed increasing genital drug concentrations after a single intravaginal administration when compared to continuous daily treatment for five days with 25-times higher oral doses. For instance, the levels of tenofovir and FTC in vaginal lavage were around 4- and 29-fold higher, respectively. PCL fibers were also superior to oral treatment, although to a minor extent (approximately 2-fold higher drug concentrations in lavage). Vaginal tissue drug levels were generally low for all treatments, while systemic drug exposure was negligible in the case of fibers. These data suggest that proposed fibers may provide an interesting alternative or an ancillary option to oral PrEP in women.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Profilaxis Pre-Exposición , Administración Intravaginal , Animales , Fármacos Anti-VIH/uso terapéutico , Emtricitabina , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Humanos , Ratones , Tenofovir
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA