RESUMEN
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.
Asunto(s)
Distrofia Muscular de Duchenne , Animales , Porcinos , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Proteoma/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Músculo Esquelético/metabolismo , Exones/genéticaRESUMEN
PURPOSE: Growth hormone (GH) is a central regulator of ß-cell proliferation, insulin secretion and sensitivity. Aim of this study was to investigate the effect of GH insensitivity on pancreatic ß-cell histomorphology and consequences for metabolism in vivo. METHODS: Pancreata from pigs with growth hormone receptor deficiency (GHR-KO, n = 12) were analyzed by unbiased quantitative stereology in comparison to wild-type controls (WT, n = 12) at 3 and 7-8.5 months of age. In vivo secretion capacity for insulin and glucose tolerance were assessed by intravenous glucose tolerance tests (ivGTTs) in GHR-KO (n = 3) and WT (n = 3) pigs of the respective age groups. RESULTS: Unbiased quantitative stereological analyses revealed a significant reduction in total ß-cell volume (83% and 73% reduction in young and adult GHR-KO vs. age-matched WT pigs; p < 0.0001) and volume density of ß-cells in the pancreas of GHR-KO pigs (42% and 39% reduction in young and adult GHR-KO pigs; p = 0.0018). GHR-KO pigs displayed a significant, age-dependent increase in the proportion of isolated ß-cells in the pancreas (28% in young and 97% in adult GHR-KO vs. age-matched WT pigs; p = 0.0009). Despite reduced insulin secretion in ivGTTs, GHR-KO pigs maintained normal glucose tolerance. CONCLUSION: GH insensitivity in GHR-KO pigs leads to decreased ß-cell volume and volume proportion of ß-cells in the pancreas, causing a reduced insulin secretion capacity. The increased proportion of isolated ß-cells in the pancreas of GHR-KO pigs highlights the dependency on GH stimulation for proper ß-cell maturation. Preserved glucose tolerance accomplished with decreased insulin secretion indicates enhanced sensitivity for insulin in GH insensitivity.