Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 31(5): 2595-2609, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33338201

RESUMEN

The dentato-rubro-thalamo-cortical tract (DRTC) is the main outflow pathway of the cerebellum, contributing to a finely balanced corticocerebellar loop involved in cognitive and sensorimotor functions. Damage to the DRTC has been implicated in cerebellar mutism syndrome seen in up to 25% of children after cerebellar tumor resection. Multi-shell diffusion MRI (dMRI) combined with quantitative constrained spherical deconvolution tractography and multi-compartment spherical mean technique modeling was used to explore the frontocerebellar connections and microstructural signature of the DRTC in 30 healthy children. The highest density of DRTC connections were to the precentral (M1) and superior frontal gyri (F1), and from cerebellar lobules I-IV and IX. The first evidence of a topographic organization of anterograde projections to the frontal cortex at the level of the superior cerebellar peduncle (SCP) is demonstrated, with streamlines terminating in F1 lying dorsomedially in the SCP compared to those terminating in M1. The orientation dispersion entropy of DRTC regions appears to exhibit greater contrast than that shown by fractional anisotropy. Analysis of a separate reproducibility cohort demonstrates good consistency in the dMRI metrics described. These novel anatomical insights into this well-studied pathway may prove to be of clinical relevance in the surgical resection of cerebellar tumors.


Asunto(s)
Núcleos Cerebelosos/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Núcleo Rojo/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Adolescente , Adulto , Enfermedades Cerebelosas , Niño , Imagen de Difusión Tensora , Femenino , Voluntarios Sanos , Humanos , Masculino , Corteza Motora/diagnóstico por imagen , Mutismo , Vías Nerviosas/diagnóstico por imagen , Procedimientos Neuroquirúrgicos , Complicaciones Posoperatorias , Corteza Prefrontal/diagnóstico por imagen , Adulto Joven
2.
Magn Reson Med ; 76(6): 1837-1847, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26714794

RESUMEN

PURPOSE: Diffusion spectrum imaging (DSI) is an imaging technique that has been successfully applied to resolve white matter crossings in the human brain. However, its accuracy in complex microstructure environments has not been well characterized. THEORY AND METHODS: Here we have simulated different tissue configurations, sampling schemes, and processing steps to evaluate DSI performances' under realistic biophysical conditions. A novel approach to compute the orientation distribution function (ODF) has also been developed to include biophysical constraints, namely integration ranges compatible with axial fiber diffusivities. RESULTS: Performed simulations identified several DSI configurations that consistently show aliasing artifacts caused by fast diffusion components for both isotropic diffusion and fiber configurations. The proposed method for ODF computation showed some improvement in reducing such artifacts and improving the ability to resolve crossings, while keeping the quantitative nature of the ODF. CONCLUSION: In this study, we identified an important limitation of current DSI implementations, specifically the presence of aliasing due to fast diffusion components like those from pathological tissues, which are not well characterized, and can lead to artifactual fiber reconstructions. To minimize this issue, a new way of computing the ODF was introduced, which removes most of these artifacts and offers improved angular resolution. Magn Reson Med 76:1837-1847, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/anatomía & histología , Imagen de Difusión Tensora/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Sustancia Blanca/anatomía & histología , Difusión , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Front Neurosci ; 14: 269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322185

RESUMEN

BACKGROUND: Surgery is a key approach for achieving seizure freedom in children with focal onset epilepsy. However, the resection can affect or be in the vicinity of the optic radiations. Multi-shell diffusion MRI and tractography can better characterize tissue structure and provide guidance to help minimize surgical related deficits. Whilst in adults tractography has been used to demonstrate that damage to the optic radiations leads to postoperative visual field deficits, this approach has yet to be properly explored in children. OBJECTIVE: To demonstrate the capabilities of multi-shell diffusion MRI and tractography in characterizing microstructural changes in children with epilepsy pre- and post-surgery affecting the occipital, parietal or temporal lobes. METHODS: Diffusion Tensor Imaging and the Spherical Mean Technique were used to investigate the microstructure of the optic radiations. Furthermore, tractography was used to evaluate whether pre-surgical reconstructions of the optic radiations overlap with the resection margin as measured using anatomical post-surgical T1-weighted MRI. RESULTS: Increased diffusivity in patients compared to controls at baseline was observed with evidence of decreased diffusivity, anisotropy, and neurite orientation distribution in contralateral hemisphere after surgery. Pre-surgical optic radiation tractography overlapped with post-surgical resection margins in 20/43 (46%) children, and where visual data was available before and after surgery, the presence of overlap indicated a visual field deficit. CONCLUSION: This is the first report in a pediatric series which highlights the relevance of tractography for future pre-surgical evaluation in children undergoing epilepsy surgery and the usefulness of multi-shell diffusion MRI to characterize brain microstructure in these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA